210 research outputs found

    16.1 Total joint reconstruction of the arthritic ankle joint using bipolar shell allograft

    Get PDF

    Human articular chondrocytes immortalized by HPV-16 E6 and E7 genes: Maintenance of differentiated phenotype under defined culture conditions

    Get PDF
    AbstractObjective To establish an immortalized normal human articular chondrocyte line which could be useful for a better understanding of cell molecular mechanisms relevant for the development of new therapeutic approaches in rheumatic diseases.Design Chondrocytes from human adult articular healthy cartilage were transfected in primary culture with a plasmid containing two human papilloma virus type 16 (HPV-16) early function genes: E6 and E7, using the highly efficient cationic liposome-mediated (lipofection) procedure. The transfection was verified by reverse transcriptase-polymerase chain reaction analysis of E7 mRNA and by immunofluorence localization of the E7 protein in the cell cytoplasm. The established chondrocyte cell line was examined in monolayer and in two culture conditions that were described to re-induce differentiated characteristics: culturing in a serum-free defined medium supplemented with an insulin-containing serum substitute and seeding on a hyaluronan-based non-woven structured biomaterial. The expression of markers characteristic of cartilage was shown in the mRNA by reverse transcriptase-polymerase chain reaction. Immunohistological staining and Western blotting analysis were performed to evaluate type II collagen synthesis. Proteoglycans deposition was detected by Alcian Blue staining. A Field Emission In Lens Scanning Microscopy was used to look at the morphology of the immortalized cells at very high magnification.Results Normal human articular chondrocytes were efficiently transfected leading to the establishment of an immortalized cell line as confirmed by HPV-16 E7 mRNA and protein detection. These cells were able to re-express type II collagen both at mRNA and protein levels under the two defined cultured conditions we used, still maintaining type I collagen expression. Collagen IX mRNA was present only in early primary culture while collagen type X and aggrecan transcripts were always detected. Alcian Blue staining showed a proteoglycan-rich matrix production. The ultrastructural analysis of the immortalized cells revealed that their morphology strictly resembled that of normal chondrocytes.Conclusions The cell line that we obtained may be a useful tool for increasing our knowledge of the genetic and biochemical events involved in the processes of cartilage growth and differentiation. Moreover, it appears to be a suitable model for pharmacological and toxicological studies related to rheumatic diseases relevant to humans

    A molecular and histological characterization of cartilage from patients with Morquio syndrome

    Get PDF
    SummaryObjectiveTo investigate the gene expression profile and the histological aspects of articular cartilage of patients affected by Morquio syndrome, a lysosomal storage disease characterized by the accumulation of glycosaminoglycans within the cells which result in abnormal formation and growth of the skeletal system.MethodArticular cartilage samples were obtained from the femoral condyle of two siblings with Morquio syndrome during surgery performed to treat valgus knee. As controls, four biopsy samples of healthy cartilage were obtained from four different male multiorgan donors. A Real-Time Polymerase Chain reaction (RT-PCR) analysis was performed to evaluate the expression of type I and II collagens and aggrecan mRNAs. Histological and immunohistochemical analyses for some matrix proteins were carried out on paraffin embedded sections.ResultsType I collagen mRNA mean level was higher in the samples of patients with Morquio syndrome compared to controls. Type II collagen and aggrecan mRNAs' mean expression was instead lower. The morphological appearance of the cartilage showed a poorly organized tissue structure with not homogeneously distributed cells that were larger compared to normal chondrocytes due to the presence inside the vacuoles of proteoglycans which were not metabolized. Chondrocytes were negative for collagen II immunostaining while the extracellular matrix was weakly positive. Collagen type I immunostaining was positive at cellular level. Keratan sulfate showed diffuse positivity and chondroitin-6-sulfate was present throughout the cartilaginous thickness.ConclusionIn cartilage of patients with Morquio syndrome, a low expression of collagen type II and a high expression of collagen type I both at protein and molecular levels are evidentiated. This finding could give evidence of the reduction in ankle and knee joint movement observable in these patients

    Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAFF11): Molecular, Immunohistochemical and ultrastructural analysis.

    Get PDF
    Association of biomaterials with autologous cells can provide a new generation of implantable devices for cartilage repair. Such scaffolds should provide a preformed three-dimensional shape and prevent cells from escaping into the articular cavity. Furthermore, these constructs should have sufficient mechanical strength to facilitate handling in a clinical setting and stimulate the uniform spreading of cells and their phenotype redifferentiation. The aim of this study was to verify the ability of HYAFF®11, a recently developed hyaluronic-acid-based biodegradable polymer, to support the growth of human chondrocytes and to maintain their original phenotype. This capability was assessed by the evaluation of collagen types I, II and aggrecan mRNA expression. Immunohistochemical analyses were also performed to evaluate collagen types I, II and proteoglycans synthesis. A field emission in lens scanning microscopy was utilized to verify the interactions between the cells and the biomaterial. Our data indicate that human chondrocytes seeded on HYAFF®11 express and produce collagen type II and aggrecan and downregulate the production of collagen type I. These results provide an in vitro demonstration for the therapeutic potential of HYAFF®11 as a delivery vehicle in a tissue-engineered approach towards the repair of articular cartilage defects
    • …
    corecore