88 research outputs found

    A transient helix in the disordered region of dynein light intermediate chain links the motor to structurally diverse adaptors for cargo transport

    Get PDF
    All animal cells use the motor cytoplasmic dynein 1 (dynein) to transport diverse cargo toward microtubule minus ends and to organize and position microtubule arrays such as the mitotic spindle. Cargo-specific adaptors engage with dynein to recruit and activate the motor, but the molecular mechanisms remain incompletely understood. Here, we use structural and dynamic nuclear magnetic resonance (NMR) analysis to demonstrate that the C-terminal region of human dynein light intermediate chain 1 (LIC1) is intrinsically disordered and contains two short conserved segments with helical propensity. NMR titration experiments reveal that the first helical segment (helix 1) constitutes the main interaction site for the adaptors Spindly (SPDL1), bicaudal D homolog 2 (BICD2), and Hook homolog 3 (HOOK3). In vitro binding assays show that helix 1, but not helix 2, is essential in both LIC1 and LIC2 for binding to SPDL1, BICD2, HOOK3, RAB-interacting lysosomal protein (RILP), RAB11 family-interacting protein 3 (RAB11FIP3), ninein (NIN), and trafficking kinesin-bind-ing protein 1 (TRAK1). Helix 1 is sufficient to bind RILP, whereas other adaptors require additional segments preceding helix 1 for efficient binding. Point mutations in the C-terminal helix 1 of Caenorhabditis elegans LIC, introduced by genome editing, severely affect development, locomotion, and life span of the animal and disrupt the distribution and transport kinetics of membrane cargo in axons of mechanosensory neurons, identical to what is observed when the entire LIC C-terminal region is deleted. Deletion of the C-terminal helix 2 delays dynein-dependent spindle positioning in the one-cell embryo but overall does not significantly perturb dynein function. We conclude that helix 1 in the intrinsically disordered region of LIC provides a conserved link between dynein and structurally diverse cargo adaptor families that is critical for dynein function in vivo.This work was financed by the Fundo Europeu de Desenvolvimento Regional (FEDER) through the Norte Portugal Regional Operational Programme (NORTE 2020), Portugal 2020 (RG); by the Fundação para a CiĂȘncia e a Tecnologia (FCT)/MinistĂ©rio da CiĂȘncia, Tecnologia e Ensino Superior in the framework of the project NORTE-01-0145-FEDER-030507 (RG); by FCT fellowships IF/01015/2013/CP1157/CT0006 (RG) and SFRH/ BPD/101898/2014 (DJB); by the European Research Council under the European Union’s Seventh Framework Programme, ERC grant agreement no. ERC-2013-StG-338410-DYNEINOME (RG), and by a start-up package of the University of Colorado (BV). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Inter-subunit coupling enables fast CO2-fixation by reductive carboxylases

    Get PDF
    Enoyl-CoA carboxylases/reductases (ECRs) are some of the most efficient CO2-fixing enzymes described to date. However, the molecular mechanisms underlying the extraordinary catalytic activity of ECRs on the level of the protein assembly remain elusive. Here we used a combination of ambient-temperature X-ray free electron laser (XFEL) and cryogenic synchrotron experiments to study the structural organization of the ECR from Kitasatospora setae. The K. setae ECR is a homotetramer that differentiates into a pair of dimers of open- and closed-form subunits in the catalytically active state. Using molecular dynamics simulations and structure-based mutagenesis, we show that catalysis is synchronized in the K. setae ECR across the pair of dimers. This conformational coupling of catalytic domains is conferred by individual amino acids to achieve high CO2-fixation rates. Our results provide unprecedented insights into the dynamic organization and synchronized inter- and intrasubunit communications of this remarkably efficient CO2-fixing enzyme during catalysis.

    13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides

    Get PDF
    We present here a set of 13C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose 13C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C4â€Č nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C1â€Č,H1â€Č ribose signals. The experiments were applied to two RNA hairpin structures. The current set of 13C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, 13C-direct detected NMR methods constitute useful complements to the conventional 1H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs

    Avian ÎČ-defensin variation in bottlenecked populations : the Seychelles warbler and other congeners

    Get PDF
    ÎČ-defensins are important components of the vertebrate innate immune system responsible for encoding a variety of anti-microbial peptides. Pathogen-mediated selection is thought to act on immune genes and potentially maintain allelic variation in the face of genetic drift. The Seychelles warbler, Acrocephalus sechellensis, is an endemic passerine that underwent a recent bottleneck in its last remaining population, resulting in a considerable reduction in genome-wide variation. We genotyped avian ÎČ-defensin (AvBD) genes in contemporary (2000–2008) and museum samples (1876–1940) of the Seychelles warbler to investigate whether immunogenetic variation was lost through this bottleneck, and examined AvBD variation across four other Acrocephalus species with varying demographic histories. No variation was detected at four of the six AvBD loci screened in the post-bottleneck population of Seychelles warbler, but two silent nucleotide polymorphisms were identified at AvBD8 and one potentially functional amino-acid variation was observed at AvBD11. Variation in the Seychelles warbler was significantly lower than in the mainland migratory congeneric species investigated, but it similar to that found in other bottlenecked species. In addition, screening AvBD7 in 15 museum specimens of Seychelles warblers sampled prior to the bottleneck (1877–1905) revealed that this locus possessed two alleles previously, compared to the single allele in the contemporary population. Overall, the results show that little AvBD variation remains in the Seychelles warbler, probably as a result of having low AvBD diversity historically rather than the loss of variation due to drift associated with past demographic history. Given the limited pathogen fauna, this lack of variation at the AvBD loci may currently not pose a problem for this isolate population of Seychelles warblers, but it may be detrimental to the species’ long-term survival if new pathogens reach the population in the future

    37th International Symposium on Intensive Care and Emergency Medicine (part 3 of 3)

    Full text link

    Welfare by the ear: Comparing relative durations and frequencies of ear postures by using an automated tracking system in sheep

    Full text link
    Given the increased interest in animal emotional reactions for assessing welfare, indicators for such reactions are sought. Ear postures and movements have been found to be promising indicators of emotional states in sheep and other animals. The manual recording of ear postures, however, is very time consuming and possibly prone to a degree of inaccuracy due to the subtle and fast nature of ear movements that have to be identified. Therefore, a number of previous studies have analysed the frequency of certain ear postures relative to all ear posture changes rather than measuring the relative duration spent with different ear postures. Here, we present an automated, continuous tracking system that keeps track of small and lightweight marker balls attached to the head and ears of sheep. We measured ear postures and movements when the animals were confronted with three physical stimuli thought to differ in valence (from negative to intermediate to positive). We then compared new ear-posture definitions reflecting the real time spent with certain ear postures during stimulation with previous definitions used for video-based analyses that assessed ear-posture changes in relation to the total number of observed ear postures. In the analysis, we correlated new and previous measures both between and within experimental stimuli using residuals from mixed-effects models. We found that the new and previous definitions of ear postures and movements correlated highly. Given these high correlations and the discussed theoretical and practical advantages of the automated tracking, the new recording system can be recommended highly for assessing reactions in animals that may indicate emotional states

    A Study of the Room Temperature Anelastic Creep of Cu-Be

    No full text
    The future nanotechnology requires materials which are dimensionally and elastically stable within the nm-domain. Because of their elastic stability, Cu-Be alloys are often used for the fabrication of elastic force sensors (spring elements). Anelastic and viscous creep limit the precision of such sensors. Therefore we have studied the anelastic and viscoelastic relaxations of Cu-Be using laser heterodyne interferometery. This method allows to measure flexural displacements as small as 0.1 nm. Our measurements revealed that the anelastic creep of Cu-Be is influenced by the microstructure of the bulk sample as well as the surface condition. The observed influence of the surface on the anelastic creep suggests that the surface dislocation density controls the anelastic relaxation
    • 

    corecore