1,411 research outputs found
Neutron knockout of 12Be populating neutron-unbound states in 11Be
Neutron-unbound resonant states of 11Be were populated in neutron knock-out
reactions from 12Be and identified by 10Be-n coincidence measurements. A
resonance in the decay-energy spectrum at 80(2) keV was attributed to a highly
excited unbound state in 11Be at 3.949(2) MeV decaying to the 2+ excited state
in 10Be. A knockout cross section of 15(3) mb was inferred for this 3.949(2)
MeV state suggesting a spectroscopic factor near unity for this 0p3/2- level,
consistent with the detailed shell model calculations.Comment: 5 pages, 2 figures \pacs{29.38.Db, 29.30.Hs, 24.50.+g, 21.10.Pc,
21.10.Hw, 27.20.+n} \keywords{neutron decay spectroscopy, neutron-unbound
states in 11Be
Population of neutron unbound states via two-proton knockout reactions
The two-proton knockout reaction 9Be(26Ne,O2p) was used to explore excited
unbound states of 23O and 24O. In 23O a state at an excitation energy of
2.79(13) MeV was observed. There was no conclusive evidence for the population
of excited states in 24O.Comment: 6 pages, 3 figures, Proc. 9th Int. Spring Seminar on Nucl. Phys.
Changing Facets of Nuclear Structure, May 20-34, 200
Double di ffential fragmentation cross sections measurements of 95 MeV/u 12C on thin targets for hadrontherapy
During therapeutic treatment with heavy ions like carbon, the beam undergoes
nuclear fragmentation and secondary light charged particles, in particular
protons and alpha particles, are produced. To estimate the dose deposited into
the tumors and the surrounding healthy tissues, an accurate prediction on the
fluences of these secondary fragments is necessary. Nowadays, a very limited
set of double di ffential carbon fragmentation cross sections are being
measured in the energy range used in hadrontherapy (40 to 400 MeV/u).
Therefore, new measurements are performed to determine the double di ffential
cross section of carbon on di erent thin targets. This work describes the
experimental results of an experiment performed on May 2011 at GANIL. The
double di ffential cross sections and the angular distributions of secondary
fragments produced in the 12C fragmentation at 95 MeV/u on thin targets (C,
CH2, Al, Al2O3, Ti and PMMA) have been measured. The experimental setup will be
precisely described, the systematic error study will be explained and all the
experimental data will be presented.Comment: Submitted to PR
Charge Imbalance and Bilayer 2D Electron Systems at
We use interlayer tunneling to study bilayer 2D electron systems at over a wide range of charge density imbalance, ,
between the two layers. We find that the strongly enhanced tunneling associated
with the coherent excitonic phase at small layer separation can
survive at least up to an imbalance of = 0.5, i.e
= (3/4, 1/4). Phase transitions between the excitonic state and
bilayer states which lack significant interlayer correlations can be induced in
three different ways: by increasing the effective interlayer spacing ,
the temperature , or the charge imbalance, . We observe that
close to the phase boundary the coherent phase can be absent at
= 0, present at intermediate , but then absent again
at large , thus indicating an intricate phase competition between
it and incoherent quasi-independent layer states. At zero imbalance, the
critical shifts linearly with temperature, while at = 1/3
the critical is only weakly dependent on . At = 1/3 we
report the first observation of a direct phase transition between the coherent
excitonic bilayer integer quantum Hall phase and the pair of single
layer fractional quantized Hall states at = 2/3 and .Comment: 13 pages, 8 postscript figures. Final published versio
Spectroscopy of neutron-unbound F
The ground state of F has been observed as an unbound resonance
keV above the ground state of F. Comparison of this
result with USDA/USDB shell model predictions leads to the conclusion that the
F ground state is primarily dominated by -shell configurations. Here
we present a detailed report on the experiment in which the ground state
resonance of F was first observed. Additionally, we report the first
observation of a neutron-unbound excited state in F at an excitation
energy of keV.Comment: 10 pages, 11 figures, Accepted for publication in Phys. Rev.
Three-body correlations in the ground-state decay of 26O
Background: Theoretical calculations have shown that the energy and angular
correlations in the three-body decay of the two-neutron unbound O26 can provide
information on the ground-state wave function, which has been predicted to have
a dineutron configuration and 2n halo structure.
Purpose: To use the experimentally measured three-body correlations to gain
insight into the properties of O26, including the decay mechanism and
ground-state resonance energy.
Method: O26 was produced in a one-proton knockout reaction from F27 and the
O24+n+n decay products were measured using the MoNA-Sweeper setup. The
three-body correlations from the O26 ground-state resonance decay were
extracted. The experimental results were compared to Monte Carlo simulations in
which the resonance energy and decay mechanism were varied.
Results: The measured three-body correlations were well reproduced by the
Monte Carlo simulations but were not sensitive to the decay mechanism due to
the experimental resolutions. However, the three-body correlations were found
to be sensitive to the resonance energy of O26. A 1{\sigma} upper limit of 53
keV was extracted for the ground-state resonance energy of O26.
Conclusions: Future attempts to measure the three-body correlations from the
ground-state decay of O26 will be very challenging due to the need for a
precise measurement of the O24 momentum at the reaction point in the target
Observation of Ground-State Two-Neutron Decay
Neutron decay spectroscopy has become a successful tool to explore nuclear
properties of nuclei with the largest neutron-to-proton ratios. Resonances in
nuclei located beyond the neutron dripline are accessible by kinematic
reconstruction of the decay products. The development of two-neutron detection
capabilities of the Modular Neutron Array (MoNA) at NSCL has opened up the
possibility to search for unbound nuclei which decay by the emission of two
neutrons. Specifically this exotic decay mode was observed in 16Be and 26O.Comment: To be published in Acta Physica Polonica
Energy distributions from three-body decaying many-body resonances
We compute energy distributions of three particles emerging from decaying
many-body resonances. We reproduce the measured energy distributions from
decays of two archetypal states chosen as the lowest and
-resonances in C populated in -decays. These states are
dominated by sequential, through the Be ground state, and direct decays,
respectively. These decay mechanisms are reflected in the ``dynamic'' evolution
from small, cluster or shell-model states, to large distances, where the
coordinate or momentum space continuum wavefunctions are accurately computed.Comment: 4 pages, 4 figures. Accepted for publication in Physical Review
Letter
Structure and Decay Correlations of Two-Neutron Systems Beyond the Dripline
The two-neutron unbound systems of 16Be, 13Li, 10He, and 26O have been measured using the Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet setup. The correlations of the 3-body decay for the 16Be and 13Li were extracted and demonstrated a strong correlated enhancement between the two neutrons. The measurement of the 10He ground state resonance from a 14Be(−2p2n) reaction provided insight into previous predictions that wavefunction of the entrance channel, projectile, can influence the observed decay energy spectrum for the unbound system. Lastly, the decay-in-target (DiT) technique was utilized to extract the lifetime of the 26O ground state. The measured lifetime of 4.5+1.1 −1.5 (stat.)±3(sys.) ps provides the first indication of two-neutron radioactivity
- …
