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We compute energy distributions of three particles emerging from decaying many-body resonances. We
reproduce the measured energy distributions from decays of two archetypal states chosen as the lowest 0�

and 1� resonances in 12C populated in � decays. These states are dominated by sequential, through the
8Be ground state, and direct decays, respectively. These decay mechanisms are reflected in the ‘‘dynamic’’
evolution from small, cluster or shell-model states, to large distances, where the coordinate or momentum
space continuum wave functions are accurately computed.
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Introduction.—Energy and momentum conservation
guarantees that two particles, emerging from decay of a
given quantum state, appear with definite kinetic energies
inversely proportional to their masses. In three-body de-
cays the available energy can be continuously distributed
among the particles. Prominent classical examples are �
emission and � decay, respectively. Surprisingly enough,
the decay of a many-body quantum system into three
particles has not been well described microscopically
although discussed phenomenologically for various sys-
tems. The process depends on the initial state and the
dynamic evolution, i.e., the decay mechanism.

This problem of three-body decay is common to several
subfields of physics. The invention of Dalitz plots was an
early attempt to classify the decay mechanisms by use of
intermediate two-body doorway states [1]. The underlying
dynamics in particle physics may be described as quark
rearrangements. Similar decays occur in annihilation of a
proton-antiproton pair from a Coulomb-like orbit into three
mesons [2]. In molecular physics an example is decay of
excited states of the H3 molecule into three hydrogen
atoms [3]. In nuclear physics there exists a large number
of three-body decaying systems of disparate structures and
decay mechanisms, e.g., various excited states of 6He, 6Li,
12C, 17Ne. More and more high-quality experimental data
have become available in all subfields [4–7], and quanti-
tatively accurate models are needed to extract and under-
stand the underlying physics.

The purpose of the present Letter is to compute the
energy distributions for three-body decaying excited nu-
clear many-body resonances. We shall assume that the
resonances are populated in � decays and consequently
only an outgoing flux is present. For reactions an ingoing
flux is required to provide the population of the decaying
wave function. Such a generalization is easily achieved by
allowing initial conditions different from those of a reso-
nance wave function. In all cases the major difficulty is to
compute accurately the asymptotic large-distance three-

body wave functions corresponding to genuine many-
body resonances, which possibly differ at small distances
from cluster states formed by the emerging three
particles [8].

At least four problems must be solved: (i) the complex
scaled resonance wave functions must be accurately deter-
mined even though they vanish exponentially at large
distances, (ii) the wave functions must be traced as they
‘‘evolve dynamically’’ from relatively small to asymptoti-
cally large distances, (iii) the Coulomb problem of cou-
pling continuum states at infinitely large distances must be
solved, and (iv) the mixture of two- and three-body asymp-
totics must be accurately determined.

Theoretical framework.—We use the hyperspherical
adiabatic expansion method of the Faddeev equations
combined with complex scaling [9,10]. The hyperradius
� is the most important of the coordinates. For three
identical particles of mass m� the definition is

 mN�
2 �

m�

3

X3

i<j

�ri � rj�
2 � m�

X3

i�1

�ri �R�
2; (1)

where ri is the coordinate of particle number i, R is the
three-body center-of-mass coordinate, and mN � m�=4.

The two-body interactions are chosen to reproduce the
available low-energy scattering data. A three-body poten-
tial with a range corresponding roughly to the three touch-
ing constituent particles is adjusted to reproduce the energy
of each many-body resonance. The wave function and the
complex energy of the resonance are then defined.
Coordinate and momentum space angular wave functions
are identical for a given total energy and an asymptotically
large value of � [11]. To obtain the energy (E�) distribution
of the particle we integrate the square of the resonance
wave function over unobserved momenta.

The numerical computations must first provide accurate
wave functions from small to intermediate distances,
where the relatively fast changes due to the crucial short-
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range interaction are completed. This is efficiently
achieved with the Faddeev decomposition, and a hyper-
spherical harmonics basis size individually adjusted to the
accuracy needed for the different partial waves. The
smoother variation from intermediate to asymptotic dis-
tances is analytical for short-range interactions [9]. The
long-range Coulomb potentials can be treated numerically
precisely as any other potential in the transitions from
small to intermediate distances.

However, special treatment is required in the variations
from intermediate to large distances. The necessary basis
sizes become insurmountably large. Our solution is to
compute an accurate wave function at intermediate, but
relatively large, distances. This is achieved when an even
larger hyperradius, compensated by a larger basis, leads to
the same observables derived from the wave functions.
This stability condition is difficult to reach when both
three-body background continuum states are populated
simultaneously with resonances in one or more of the
two-body subsystems. At sufficiently large distances we
can precisely identify these structures as components in the
complex scaled wave functions related to different adia-
batic potentials [11]; e.g., sequential decay proceeds
through a potential approaching the corresponding com-
plex two-body energy E2b [10], whereas no intermediate
structure is present for direct decay to the continuum.

When the two-body intermediate states have large
widths the related radial wave function decreases quickly,
because then the adiabatic couplings are large. These states
then dissipate fast into the continuum described as direct
decay and the distinction becomes artificial. This process
eventually happens for all sequential decays since the
intermediate states are unstable. Classification into sequen-
tial and direct decay is related to the use of different
complete basis states, i.e., either two-body resonances
and the third particle in the continuum or three-body con-
tinuum states. Interpretation as sequential or direct is then
meaningful when a few states in one basis are sufficient
while many are needed in the other. Such a distinction
between paths producing the same observable is not pos-
sible in quantum mechanics.

Illuminating archetypes.—Accurate measurements of
�-particle energy distributions are available from decays
of 0� and 1� resonances of 12C [6,7,12,13]. The lowest 0�

resonance is often described as a cluster state, whereas the
1� resonance in contrast is referred to as a shell-model
state without any significant cluster structure [14–18].
Furthermore, the decay mechanisms are known to be dif-
ferent [6,7]. These cases are therefore ideally suited as
illustrations of the present novel technique.

In Fig. 1 we show the lowest potentials where the
attractive pockets at small distance support the resonances
and provide the small-distance boundary conditions. As the
hyperradius increases beyond the barriers, the potentials all
decrease as 1=� due to the Coulomb repulsion. The struc-
ture at large distances is necessarily of three-body charac-
ter since this is the boundary condition imposed by the

measurement. In contrast, at small distances these clusters
overlap and the detailed description must use the nucleon
degrees of freedom. The first adiabatic potential corre-
sponds to the 8Be�0�� state and therefore associated with
this sequential decay. We shall explore the, perhaps sur-
prising, conjecture that the decay can be described almost
entirely within the present cluster model.

1� resonance.—With the potentials in Fig. 1 we show
the energy distribution in Fig. 2 for the 1� resonance where
sequential decay via the 8Be ground state is forbidden. The
asymptotic behavior is reached for hyperradii larger than
about 60 fm. The small variation of the distribution from
70 to 100 fm shows the convergence and the stability.
Higher accuracy is obtained at these distances with a
moderate basis size than at larger distances where the basis
quickly becomes insufficient. Two interfering adiabatic
potentials are necessary to reach the impressive agreement
with the measured distributions. It is remarkable that the
cluster model provides this accuracy in spite of the fact that
the initial decaying state is a many-body resonance without
any three-body structure.

To test the reliability we Fourier transformed the wave
function in two ways: first numerically with coordinates
from � � 0 to 100 fm and secondly by use of the analytic
solution obtained from the parametrized adiabatic poten-
tials which asymptotically are sums of 1=� and 1=�2
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FIG. 1. The real parts of the four lowest adiabatic effective
potentials, including the three-body potentials, as functions of �
for the 0� and 1� resonances of 12C. The two-body interaction,
obtained from [19], is a slightly modified version of the a1
potential of [20]. The parameters of the three-body Gaussian
potentials, S exp���2=b2�, are b � 6 fm and �S � 20; 92 MeV
for 0� and 1�, respectively [21].
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terms. The results are remarkably similar distributions and
the analytic result is in fact indistinguishable from the
curve for � � 100 fm in Fig. 2. Small deviations from
the measurements could be due to two-body interactions
with resonance properties deviating slightly from the val-
ues measured for 8Be. However, most of the differences are
more likely due to uncertainties arising from acceptance of
the detectors used in the experiment.

It is amusing to estimate that the sequential decay via the
8Be 2� resonance would produce a similar central peak of
about twice the width. To reproduce the data strong inter-
ference would then be necessary. Good phenomenological
reproduction of the data is obtained by R-matrix theory
where the smaller width is explained due to preferentially
populating the low-energy tail of the 8Be 2� resonance,
and where effects of interference also play an important
role [6].

0� resonances.—The complex scaled radial wave func-
tions are shown in Fig. 3 for the two lowest 0� resonances.
The largest probability is found at small distance and they
all vanish with increasing hyperradius. Their relative sizes
are fairly insensitive to variations of the hyperradius at
large distances where the energy distributions are deter-
mined. The first resonance is described by the first adia-
batic component for all distances whereas the second
resonance changes character from small to large � from
4% to 75% of the first adiabatic component. This compo-
nent approaches the configuration of the 0� resonance in
8Be with the third� particle far away, i.e., swaves between
each pair of � particles for each of the three Faddeev

components. The result is an energy distribution with
characteristic features of sequential three-� decay: a
narrow high-energy peak and a distribution around one
quarter of the maximum of the 12C resonance energy.
Unfortunately, these computed distributions are not accu-
rate because the two-body asymptotic behavior in these
cases is not reached for � less than 100 fm. However, the
method provides the amount of sequential decay and we
can substitute the inaccurate component by the known two-
body asymptotic behavior. The energy distribution from
decay of the first 0� resonance at 0.38 MeV is then seen
from Fig. 3 to be almost entirely determined by the first
potential, which means sequential decay. The direct decay
is about 1% in agreement with the experimental upper limit
[12]. This energy distribution is then in complete agree-
ment with experimental data.

The second 0� resonance is also dominated by the first
adiabatic potential at large distance. This is in striking
contrast to the domination by the second potential at small
distance. This is an example of the importance of the
dynamical evolution from small to large distances. The
result is about 75% sequential (first potential) and 25%
direct decay described by the other adiabatic potentials. In
comparison with measurements complications arise for
two reasons, both related to the large width of the order
1 MeV. First, effects of energy-dependent feeding in the �
decay populating the decaying state are substantial in the
data [7,13]. Higher � energies are rather strongly favored
resulting in distributions moving towards lower energies.
Second, the experimental analysis is hampered by possible
effects from other resonances. Their contributions are pos-
sibly not fully disentangled.
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FIG. 3. Ratios and the small-distance dominating wave func-
tions as functions of � for each of the two 0� resonances of 12C
at 0.38 and 3.95 MeV above threshold or at excitation energies of
7.63 and 11.2 MeV [13].
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FIG. 2. The �-particle energy distribution for the 1� resonance
of 12C at 5.43 MeV above threshold at an excitation of
12.71 MeV. The energy is measured in units of the maximum
possible, i.e., 2� 5:43=3 MeV. The thick solid curves and the
dashed curves are for coordinate space wave functions at � �
70; 100 fm. The thin curves are contributions from separate
adiabatic potentials. The histogram is the experimental distribu-
tion [13].
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The peak energy corresponding to the resonance posi-
tion is at about 2.8 MeV in the �-feeding process [7,13].
We illustrate in Fig. 4 the sequential part of the energy
distribution of the first emitted � particle by using the
Breit-Wigner distribution defined with the most probable
position at 2.8 MeV and a width equal to the sum of the
widths of the three-body decaying resonance and the in-
termediate two-body resonance. The two � particles fol-
lowing from decay of 8Be are uniquely related by
kinematic conditions resulting in a peak at lower energy.
The large width of the three-body decaying resonance
smears out the latter distribution. Between these two peaks
appears the contribution of about 25% from direct decay
described by the other adiabatic potentials. The inaccura-
cies in the computed distributions are, first, that deviations
from the Breit-Wigner shape become important for the
large width of 1 MeV, and second that the fraction of
sequential decay may be underestimated by perhaps 10%
due to missing higher partial waves.

In any case, the shape of the sequential decay via the 8Be
ground state is derived by precisely the same kinematic
conditions in both the computation and the experimental
analysis. The largest differences between theory and ex-
periment are simulated by the shift of resonance peak
energy. The agreement is rather good and only possible
due to the computed decay mechanism of dynamic evolu-
tion with hyperradius.

Summary and conclusions.—We have computed the
energy distributions for three-body decaying many-body
resonances. Combinations of short-range and repulsive
Coulomb interactions are allowed. We conjecture, and

show in specific cases, that the energy distributions of the
decay fragments are insensitive to the short-distance many-
body structure, but accessible in a three-body cluster
model. The resonance structures may be completely differ-
ent at small and large distances. This dynamic evolution is
decisive for the decay mechanism. We separate compo-
nents with two- and three-body asymptotics corresponding
to sequential and direct decays. This distinction is crucial
to obtain accurate wave functions at large distances. We
test the method by comparing results from coordinate and
momentum space.

We illustrate by application to the archetypes of
�-decaying 0� and 1� states in 12C. The 1� resonance
cannot be described as a three-body state but its decay
proceeds directly into the three-body continuum. The two
0� resonances both have substantial, but very different,
cluster components at small distances. However, they both
decay preferentially through the same large-distance struc-
ture best described as the 0� resonance of 8Be. These
sequential decays imply a total rearrangement of the sec-
ond of these resonances from small to large distances. The
accurate �-particle energy distributions for all three reso-
nances populated in � decay are reproduced remarkably
well. Thus the method has passed very severe tests. It is
reliable and with predictive powers.
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FIG. 4 (color online). The �-particle energy distribution for
the second 0� resonance of 12C at 4.3 MeV above threshold at an
excitation of 11.2 MeV [7,13]. The interactions in Fig. 1 give an
energy of 3.95 MeV above threshold [21]. We use 2.8 MeV to
account for interference and �-feeding distortion. The maximum
energy for the most likely resonance position is then 2�
2:8=3 � 1:8 MeV. The histograms are experimental direct (the
small part), sequential, and total distribution.
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