10,095 research outputs found
Image Reconstruction with a LaBr3-based Rotational Modulator
A rotational modulator (RM) gamma-ray imager is capable of obtaining
significantly better angular resolution than the fundamental geometric
resolution defined by the ratio of detector diameter to mask-detector
separation. An RM imager consisting of a single grid of absorbing slats
rotating ahead of an array of a small number of position-insensitive detectors
has the advantage of fewer detector elements (i.e., detector plane pixels) than
required by a coded aperture imaging system with comparable angular resolution.
The RM therefore offers the possibility of a major reduction in instrument
complexity, cost, and power. A novel image reconstruction technique makes it
possible to deconvolve the raw images, remove sidelobes, reduce the effects of
noise, and provide resolving power a factor of 6 - 8 times better than the
geometric resolution. A 19-channel prototype RM developed in our laboratory at
Louisiana State University features 13.8 deg full-angle field of view, 1.9 deg
geometric angular resolution, and the capability of resolving sources to within
35' separation. We describe the technique, demonstrate the measured performance
of the prototype instrument, and describe the prospects for applying the
technique to either a high-sensitivity standoff gamma-ray imaging detector or a
satellite- or balloon-borne gamma-ray astronomy telescope.Comment: submitted to Nuclear Instrument & Methods, special edition: SORMA
2010 on June 16, 201
GCR access to the Moon as measured by the CRaTER instrument on LRO
[1] Recent modeling efforts have yielded varying and conflicting results regarding the possibility that Earth\u27s magnetosphere is able to shield energetic particles of \u3e10 MeV at lunar distances. This population of particles consists of galactic cosmic rays as well as energetic particles that are accelerated by solar flares and coronal mass ejections. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter is in orbit about the Moon and is thus able to directly test these modeling results. Over the course of a month, CRaTER samples the upstream solar wind as well as various regions of Earth\u27s magnetotail. CRaTER data from multiple lunations demonstrate that Earth\u27s magnetosphere at lunar distances produces no measurable influence on energetic particle flux, even at the lowest energies (\u3e14 MeV protons) where any effect should be maximized. For particles with energies of 14–30 MeV, we calculate an upper limit (determined by counting statistics) on the amount of shielding caused by the magnetosphere of 1.7%. The high energy channel (\u3e500 MeV) provides an upper limit of 3.2%
A theoretical study of the cluster glass-Kondo-magnetic disordered alloys
The physics of disordered alloys, such as typically the well known case of
CeNi1-xCux alloys, showing an interplay among the Kondo effect, the spin glass
state and a magnetic order, has been studied firstly within an average
description like in the Sherrington-Kirkpatrick model. Recently, a theoretical
model (PRB 74, 014427 (2006)) involving a more local description of the
intersite interaction has been proposed to describe the phase diagram of
CeNi1-xCux. This alloy is an example of the complex interplay between Kondo
effect and frustration in which there is in particular the onset of a
cluster-glass state. Although the model given in Ref. PRB 74, 014427 (2006) has
reproduced the different phases relatively well, it is not able to describe the
cluster-glass state. We study here the competition between the Kondo effect and
a cluster glass phase within a Kondo Lattice model with an inter-cluster random
Gaussian interaction. The inter-cluster term is treated within the cluster
mean-field theory for spin glasses, while, inside the cluster, an exact
diagonalisation is performed including inter-site ferromagnetic and intra-site
Kondo interactions. The cluster glass order parameters and the Kondo
correlation function are obtained for different values of the cluster size, the
intra-cluster ferromagnetic coupling and the Kondo intra-site coupling. We
obtain, for instance, that the increase of the Kondo coupling tends to destroy
the cluster glass phase.Comment: 6 pages, 2 figures, Accepted for publication in Physica
Comparative analysis of rigidity across protein families
We present a comparative study in which 'pebble game' rigidity analysis is applied to multiple protein crystal structures, for each of six different protein families. We find that the main-chain rigidity of a protein structure at a given hydrogen bond energy cutoff is quite sensitive to small structural variations, and conclude that the hydrogen bond constraints in rigidity analysis should be chosen so as to form and test specific hypotheses about the rigidity of a particular protein. Our comparative approach highlights two different characteristic patterns ('sudden' or 'gradual') for protein rigidity loss as constraints are removed, in line with recent results on the rigidity transitions of glassy networks
New measurements of total ionizing dose in the lunar environment
[1] We report new measurements of solar minimum ionizing radiation dose at the Moon onboard the Lunar Reconnaissance Orbiter (LRO) from June 2009 through May 2010. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on LRO houses a compact and highly precise microdosimeter whose design allows measurements of dose rates below 1 micro-Rad per second in silicon achieved with minimal resources (20 g, ∼250 milliwatts, and ∼3 bits/second). We envision the use of such a small yet accurate dosimeter in many future spaceflight applications where volume, mass, and power are highly constrained. As this was the first operation of the microdosimeter in a space environment, the goal of this study is to verify its response by using simultaneous measurements of the galactic cosmic ray ionizing environment at LRO, at L1, and with other concurrent dosimeter measurements and model predictions. The microdosimeter measured the same short timescale modulations in the galactic cosmic rays as the other independent measurements, thus verifying its response to a known source of minimum-ionizing particles. The total dose for the LRO mission over the first 333 days was only 12.2 Rads behind ∼130 mils of aluminum because of the delayed rise of solar activity in solar cycle 24 and the corresponding lack of intense solar energetic particle events. The dose rate in a 50 km lunar orbit was about 30 percent lower than the interplanetary rate, as one would expect from lunar obstruction of the visible sky
Soil Moisture Data Assimilation in the NASA Land Information System for Local Modeling Applications and Improved Situational Awareness
As part of the NASA Soil Moisture Active Passive (SMAP) Early Adopter (EA) program, the NASA Shortterm Prediction Research and Transition (SPoRT) Center has implemented a data assimilation (DA) routine into the NASA Land Information System (LIS) for soil moisture retrievals from the European Space Agency's Soil Moisture Ocean Salinity (SMOS) satellite. The SMAP EA program promotes applicationdriven research to provide a fundamental understanding of how SMAP data products will be used to improve decisionmaking at operational agencies. SPoRT has partnered with select NOAA/NWS Weather Forecast Offices (WFOs) that use output from a realtime regional configuration of LIS, without soil moisture DA, to initialize local numerical weather prediction (NWP) models and enhance situational awareness. Improvements to local NWP with the current LIS have been demonstrated; however, a better representation of the land surface through assimilation of SMOS (and eventually SMAP) retrievals is expected to lead to further model improvement, particularly during warmseason months. SPoRT will collaborate with select WFOs to assess the impact of soil moisture DA on operational forecast situations. Assimilation of the legacy SMOS instrument data provides an opportunity to develop expertise in preparation for using SMAP data products shortly after the scheduled launch on 5 November 2014. SMOS contains a passive Lband radiometer that is used to retrieve surface soil moisture at 35km resolution with an accuracy of 0.04 cu cm cm (exp -3). SMAP will feature a comparable passive Lband instrument in conjunction with a 3km resolution active radar component of slightly degraded accuracy. A combined radarradiometer product will offer unprecedented global coverage of soil moisture at high spatial resolution (9 km) for hydrometeorological applications, balancing the resolution and accuracy of the active and passive instruments, respectively. The LIS software framework manages land surface model (LSM) simulations and includes an Ensemble Kalman Filter for conducting land surface DA. SPoRT has added a module to read, qualitycontrol and biascorrect swaths of Level II SMOS soil moisture retrievals prior to assimilation within LIS. The impact of SMOS DA is being tested using the Noah LSM. Experiments are being conducted to examine the impacts of SMOS soil moisture DA on the resulting LISNoah fields and subsequent NWP simulations using the Weather Research and Forecasting (WRF) model initialized with LISNoah output. LISNoah soil moisture will be validated against in situ observations from Texas A&M's North American Soil Moisture Database to reveal the impact and possible improvement in soil moisture trends through DA. WRF model NWP case studies will test the impacts of DA on the simulated nearsurface and boundarylayer environments, and precipitation during both quiescent and disturbed weather scenarios. Emphasis will be placed on cases with large analysis increments, especially due to contributions from regional irrigation patterns that are not represented by precipitation input in the baseline LISNoah run. This poster presentation will describe the soil moisture DA methodology and highlight LISNoah and WRF simulation results with and without assimilation
Picosecond electrical spectroscopy using monolithic GaAs circuits
This article describes an experimental apparatus for free-space mm-wave transmission measurements (spectroscopy). GaAs nonlinear transmission lines and sampling circuits are used as picosecond pulse generators and detectors, with planar monolithic bowtie antennas with associated substrate lenses used as the radiating and receiving elements. The received pulse is 270 mV amplitude and 2.4 ps rise time. Through Fourier transformation of the received pulse, 30–250 GHz measurements are demonstrated with <=0.3 dB (rms) accuracy
The orthogonal fitting procedure for determination of the empirical {\Sigma} - D relations for supernova remnants: application to starburst galaxy M82
The radio surface brightness-to-diameter ({\Sigma} - D) relation for
supernova remnants (SNRs) in the starburst galaxy M82 is analyzed in a
statistically more robust manner than in the previous studies that mainly
discussed sample quality and related selection effects. The statistics of data
fits in log {\Sigma} - log D plane are analyzed by using vertical (standard)
and orthogonal regressions. As the parameter values of D - {\Sigma} and
{\Sigma} - D fits are invariant within the estimated uncertainties for
orthogonal regressions, slopes of the empirical {\Sigma} - D relations should
be determined by using the orthogonal regression fitting procedure. Thus
obtained {\Sigma} - D relations for samples which are not under severe
influence of the selection effects could be used for estimating SNR distances.
Using the orthogonal regression fitting procedure {\Sigma} - D slope {\beta}
\approx 3.9 is obtained for the sample of 31 SNRs in M82. The results of
implemented Monte Carlo simulations show that the sensitivity selection effect
does not significantly influence the slope of M82 relation. This relation could
be used for estimation of distances to SNRs that evolve in denser interstellar
environment, with number denisty up to 1000 particles per cm3 .Comment: 14 pages, 3 figures, no changes, previous version had a typo in
publication related comment, accepted for publication in Ap
- …
