2,081 research outputs found

    Microphase separation in polyelectrolytic diblock copolymer melt : weak segregation limit

    Full text link
    We present a generalized theory of microphase separation for charged-neutral diblock copolymer melt. Stability limit of the disordered phase for salt-free melt has been calculated using Random Phase Approximation (RPA) and self-consistent field theory (SCFT). Explicit analytical free energy expressions for different classical ordered microstructures (lamellar, cylinder and sphere) are presented. We demonstrate that chemical mismatch required for the onset of microphase separation (χ⋆N\chi^{\star} N) in charged-neutral diblock melt is higher and the period of ordered microstructures is lower than those for the corresponding neutral-neutral diblock system. Theoretical predictions on the period of ordered structures in terms of Coulomb electrostatic interaction strength, chain length, block length, and the chemical mismatch between blocks are presented. SCFT has been used to go beyond the stability limit, where electrostatic potential and charge distribution are calculated self-consistently. Stability limits calculated using RPA are in perfect agreement with the corresponding SCFT calculations. Limiting laws for stability limit and the period of ordered structures are presented and comparisons are made with an earlier theory. Also, transition boundaries between different morphologies have been investigated

    Gender gap in the ERASMUS mobility program

    Full text link
    Studying abroad has become very popular among students. The ERASMUS mobility program is one of the largest international student exchange programs in the world, which has supported already more than three million participants since 1987. We analyzed the mobility pattern within this program in 2011-12 and found a gender gap across countries and subject areas. Namely, for almost all participating countries, female students are over-represented in the ERASMUS program when compared to the entire population of tertiary students. The same tendency is observed across different subject areas. We also found a gender asymmetry in the geographical distribution of hosting institutions, with a bias of male students in Scandinavian countries. However, a detailed analysis reveals that this latter asymmetry is rather driven by subject and consistent with the distribution of gender ratios among subject areas

    Best-Bet Astrophysical Neutrino Sources

    Get PDF
    Likely astrophysical sources of detectable high-energy (>> TeV) neutrinos are considered. Based on gamma-ray emission properties, the most probable sources of neutrinos are argued to be GRBs, blazars, microquasars, and supernova remnants. Diffuse neutrino sources are also briefly considered.Comment: 6 pages, 2 figures, in Proc. of TeV-Particle Astrophysics II, Madison, WI, 28-31 Aug, 200

    Composition, structure and stability of RuO_2(110) as a function of oxygen pressure

    Full text link
    Using density-functional theory (DFT) we calculate the Gibbs free energy to determine the lowest-energy structure of a RuO_2(110) surface in thermodynamic equilibrium with an oxygen-rich environment. The traditionally assumed stoichiometric termination is only found to be favorable at low oxygen chemical potentials, i.e. low pressures and/or high temperatures. At realistic O pressure, the surface is predicted to contain additional terminal O atoms. Although this O excess defines a so-called polar surface, we show that the prevalent ionic model, that dismisses such terminations on electrostatic grounds, is of little validity for RuO_2(110). Together with analogous results obtained previously at the (0001) surface of corundum-structured oxides, these findings on (110) rutile indicate that the stability of non-stoichiometric terminations is a more general phenomenon on transition metal oxide surfaces.Comment: 12 pages including 5 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Electronic structure and magnetic properties of cobalt intercalated in graphene on Ir(111)

    No full text
    Using a combination of photoemission and x-ray magnetic circular dichroism (XMCD), we characterize the growth and the electronic as well as magnetic structure of cobalt layers intercalated in between graphene and Ir(111). We demonstrate that magnetic ordering exists beyond one monolayer intercalation, and determine the Co orbital and spin magnetic moments. XMCD from the carbon edge shows an induced magnetic moment in the graphene layer, oriented antiparallel to that of cobalt. The XMCD experimental data are discussed in comparison to our results of first-principles electronic structure calculations. It is shown that good agreement between theory and experiment for the Co magnetic moments can be achieved when the local-spin-density approximation plus the Hubbard U (LSDA+U) is used

    Non-Gaussian statistics of electrostatic fluctuations of hydration shells

    Full text link
    We report the statistics of electric field fluctuations produced by SPC/E water inside a Kihara solute given as a hard-sphere core with a Lennard-Jones layer at its surface. The statistics of electric field fluctuations, obtained from numerical simulations, are studied as a function of the magnitude of a point dipole placed close to the solute-water interface. The free energy surface as a function of the electric field projected on the dipole direction shows a cross-over with the increasing dipole magnitude. While it is a single-well harmonic function at low dipole values, it becomes a double-well surface at intermediate dipole moment magnitudes, transforming to a single-well surface, with a non-zero minimum position, at still higher dipoles. A broad intermediate region where the interfacial waters fluctuate between the two minima is characterized by intense field fluctuations, with non-Gaussian statistics and the variance far exceeding the linear-response expectations. The excited state of the surface water is found to be lifted above the ground state by the energy required to break approximately two hydrogen bonds. This state is pulled down in energy by the external electric field of the solute dipole, making it readily accessible to thermal excitations. The excited state is a localized surface defect in the hydrogen-bond network creating a stress in the nearby network, but otherwise relatively localized in the region closest to the solute dipole

    Modeling the Emission Processes in Blazars

    Full text link
    Blazars are the most violent steady/recurrent sources of high-energy gamma-ray emission in the known Universe. They are prominent emitters of electromagnetic radiation throughout the entire electromagnetic spectrum. The observable radiation most likely originates in a relativistic jet oriented at a small angle with respect to the line of sight. This review starts out with a general overview of the phenomenology of blazars, including results from a recent multiwavelength observing campaign on 3C279. Subsequently, issues of modeling broadband spectra will be discussed. Spectral information alone is not sufficient to distinguish between competing models and to constrain essential parameters, in particular related to the primary particle acceleration and radiation mechanisms in the jet. Short-term spectral variability information may help to break such model degeneracies, which will require snap-shot spectral information on intraday time scales, which may soon be achievable for many blazars even in the gamma-ray regime with the upcoming GLAST mission and current advances in Atmospheric Cherenkov Telescope technology. In addition to pure leptonic and hadronic models of gamma-ray emission from blazars, leptonic/hadronic hybrid models are reviewed, and the recently developed hadronic synchrotron mirror model for TeV gamma-ray flares which are not accompanied by simultaneous X-ray flares (``orphan TeV flares'') is revisited.Comment: Invited Review at "The Multimessenger Approach to Gamma-Ray Sources", Barcelona, Spain, July 2006; submitted to Astrophysics and Space Science. 10 pages, including 6 eps figures. Uses Springer's ApSS macro

    Equilibrium solvation in quadrupolar solvents

    Full text link
    We present a microscopic theory of equilibrium solvation in solvents with zero dipole moment and non-zero quadrupole moment (quadrupolar solvents). The theory is formulated in terms of autocorrelation functions of the quadrupolar polarization (structure factors). It can be therefore applied to an arbitrary dense quadrupolar solvent for which the structure factors are defined. We formulate a simple analytical perturbation treatment for the structure factors. The solute is described by coordinates, radii, and partial charges of constituent atoms. The theory is tested on Monte Carlo simulations of solvation in model quadrupolar solvents. It is also applied to the calculation of the activation barrier of electron transfer reactions in a cleft-shaped donor-acceptor complex dissolved in benzene with the structure factors of quadrupolar polarization obtained from Molecular Dynamics simulations.Comment: Submitted to J. Chem. Phys., 20 pages and 13 figure

    Terahertz response of dipolar impurities in polar liquids: On anomalous dielectric absorption of protein solutions

    Full text link
    A theory of radiation absorption by dielectric mixtures is presented. The coarse-grained formulation is based on the wavevector-dependent correlation functions of molecular dipoles of the host polar liquid and a density-density structure factor of the positions of the solutes. A nonlinear dependence of the absorption coefficient on the solute concentration is predicted and originates from the mutual polarization of the liquid surrounding the solutes by the collective field of the solute dipoles aligned along the radiation field. The theory is applied to terahertz absorption of hydrated saccharides and proteins. While the theory gives an excellent account of the observations for saccharides without additional assumptions and fitting parameters, experimental absorption coefficient of protein solutions significantly exceeds theoretical calculations within standard dielectric models and shows a peak against the protein concentration. A substantial polarization of protein's hydration shell is required to explain the differences between standard theories and experiment. When the correlation function of the total dipole moment of the protein with its hydration shell from numerical simulations is used in the present analytical model an absorption peak similar to that seen is experiment is obtained. The result is sensitive to the specifics of protein-protein interactions in solution. Numerical testing of the theory requires the combination of terahertz dielectric and small-angle scattering measurements.Comment: 11 p
    • …
    corecore