We present a microscopic theory of equilibrium solvation in solvents with
zero dipole moment and non-zero quadrupole moment (quadrupolar solvents). The
theory is formulated in terms of autocorrelation functions of the quadrupolar
polarization (structure factors). It can be therefore applied to an arbitrary
dense quadrupolar solvent for which the structure factors are defined. We
formulate a simple analytical perturbation treatment for the structure factors.
The solute is described by coordinates, radii, and partial charges of
constituent atoms. The theory is tested on Monte Carlo simulations of solvation
in model quadrupolar solvents. It is also applied to the calculation of the
activation barrier of electron transfer reactions in a cleft-shaped
donor-acceptor complex dissolved in benzene with the structure factors of
quadrupolar polarization obtained from Molecular Dynamics simulations.Comment: Submitted to J. Chem. Phys., 20 pages and 13 figure