233 research outputs found

    Particles-on-Demand for Kinetic Theory

    Get PDF
    A novel formulation of fluid dynamics as a kinetic theory with tailored, on-demand constructed particles removes any restrictions on Mach number and temperature as compared to its predecessors, the lattice Boltzmann methods and their modifications. In the new kinetic theory, discrete particles are determined by a rigorous limit process which avoids ad hoc assumptions about their velocities. Classical benchmarks for incompressible and compressible flows demonstrate that the proposed discrete-particles kinetic theory opens up an unprecedented wide domain of applications for computational fluid dynamics

    Particles on Demand for Kinetic Theory

    Get PDF
    A novel formulation of fluid dynamics as a kinetic theory with tailored, on-demand constructed particles removes restrictions on flow speed and temperature as compared to its predecessors, the lattice Boltzmann methods and their modifications. In the new kinetic theory, discrete particles are determined by a rigorous limit process which avoids ad hoc assumptions about their velocities. Classical benchmarks for incompressible and compressible flows demonstrate that the proposed discrete-particles kinetic theory opens up an unprecedented wide domain of applications for computational fluid dynamics

    Particles on Demand for Kinetic Theory

    Get PDF
    A novel formulation of fluid dynamics as a kinetic theory with tailored, on-demand constructed particles removes restrictions on flow speed and temperature as compared to its predecessors, the lattice Boltzmann methods and their modifications. In the new kinetic theory, discrete particles are determined by a rigorous limit process which avoids ad hoc assumptions about their velocities. Classical benchmarks for incompressible and compressible flows demonstrate that the proposed discrete-particles kinetic theory opens up an unprecedented wide domain of applications for computational fluid dynamics

    The UV-A and visible solar irradiance spectrum: inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements

    No full text
    International audienceWithin the framework of the ENVISAT/-SCIAMACHY satellite validation, solar irradiance spectra are absolutely measured at moderate resolution in the UV/visible spectral range (in the UV from 316.7–418 nm and the visible from 400–652 nm at a full width half maximum resolution of 0.55 nm and 1.48 nm, respectively) from aboard the azimuth-controlled LPMA/DOAS balloon gondola at around 32 km balloon float altitude. After accounting for the atmospheric extinction due to Rayleigh scattering and gaseous absorption (O3, and NO2), the measured solar spectra are compared with previous observations. Our solar irradiance is +1.6% larger than the re-calibrated Kurucz et al. (1984) solar spectrum (Fontenla et al., 1999, called MODTRAN 3.5) in the visible spectral range (435–650 nm), +1.5% larger in the (370–415 nm) wavelength interval, but -4% smaller in the UV spectral range (316.7–370 nm), when the Kurucz spectrum is convolved to the spectral resolution of our instrument. The same comparison with the SOLSPEC solar spectrum (Thuillier et al., 1997, 1998a, b) confirms the somewhat larger solar irradiance (+1.7%) measured by the balloon instrument from 435–500 nm, but not from 500–650 nm, where the SOLSPEC is -1.3% lower than MODTRAN 3.5. Comparison of the SCIAMACHY solar spectrum from channels 1 to 4 (– re-calibrated by the University of Bremen –) with MODTRAN 3.5 indicates an agreement of +0.2% in the visible spectral range (435–585 nm). With this calibration, the SCIAMACHY solar spectrum is congruent with the balloon observations (-1%) in the 316.7–370 nm wavelength range, but both are up to -5%/-3% smaller than MODTRAN 3.5 and SOLSPEC, respectively. In agreement with findings of Skupin et al. (2002) our study emphasizes that the present ESA SCIAMACHY level 1 calibration is systematically +15% larger in the considered wavelength intervals when compared to all available other solar irradiance measurements

    Balloon-borne stratospheric BrO measurements: comparison with Envisat/SCIAMACHY BrO limb profiles

    Get PDF
    International audienceFor the first time, results of four stratospheric BrO profiling instruments, are presented and compared with reference to the SLIMCAT 3-dimensional chemical transport model (3-D CTM). Model calculations are used to infer a BrO profile validation set, measured by 3 different balloon sensors, for the new Envisat/SCIAMACHY (ENVIronment SATellite/SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) satellite instrument. The balloon observations include (a) balloon-borne in situ resonance fluorescence detection of BrO (Triple), (b) balloon-borne solar occultation DOAS measurements (Differential Optical Absorption Spectroscopy) of BrO in the UV, and (c) BrO profiling from the solar occultation SAOZ (Systeme d'Analyse par Observation Zenithale) balloon instrument. Since stratospheric BrO is subject to considerable diurnal variation and none of the measurements are performed close enough in time and space for a direct comparison, all balloon observations are considered with reference to outputs from the 3-D CTM. The referencing is performed by forward and backward air mass trajectory calculations to match the balloon with the satellite observations. The diurnal variation of BrO is considered by 1-D photochemical model calculation along the trajectories. The 1-D photochemical model is initialised with output data of the 3-D model with additional constraints on the vertical transport, the total amount and photochemistry of stratospheric bromine as given by the various balloon observations. Total [Bry]=(20.1±2.5) pptv obtained from DOAS BrO observations at mid-latitudes in 2003, serves as an upper limit of the comparison. Most of the balloon observations agree with the photochemical model predictions within their given error estimates. First retrieval exercises of BrO limb profiling from the SCIAMACHY satellite instrument on average agree to around 20% with the photochemically-corrected balloon observations of the remote sensing instruments (SAOZ and DOAS). An exception is the in situ Triple profile, in which the balloon and satellite data mostly does not agree within the given errors. In general, the satellite measurements show systematically higher values below 25 km than the balloon data and a change in profile shape above about 25 km

    Greater Expectations?

    Get PDF
    Physically Unclonable Functions (PUFs) are key tools in the construction of lightweight authentication and key exchange protocols. So far, all existing PUF-based authentication protocols follow the same paradigm: A resource-constrained prover, holding a PUF, wants to authenticate to a resource-rich verifier, who has access to a database of pre-measured PUF challenge-response pairs (CRPs). In this paper we consider application scenarios where all previous PUF-based authentication schemes fail to work: The verifier is resource-constrained (and holds a PUF), while the prover is resource-rich (and holds a CRP-database). We construct the first and efficient PUF-based authentication protocol for this setting, which we call converse PUF-based authentication. We provide an extensive security analysis against passive adversaries, show that a minor modification also allows for authenticated key exchange and propose a concrete instantiation using controlled Arbiter PUFs

    Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021

    Get PDF
    The global atmospheric methane growth rates reported by NOAA for 2020 and 2021 are the largest since systematic measurements began in 1983. To explore the underlying reasons for these anomalous growth rates, we use newly available methane data from the Japanese Greenhouse gases Observing SATellite (GOSAT) to estimate methane surface emissions. Relative to baseline values in 2019, we find that a significant global increase in methane emissions of 27.0 ± 11.3 and 20.8 ± 11.4 Tg is needed to reproduce observed atmospheric methane in 2020 and 2021, respectively, assuming fixed climatological values for OH. We see the largest annual increases in methane emissions during 2020 over Eastern Africa (14 ± 3 Tg), tropical Asia (3 ± 4 Tg), tropical South America (5 ± 4 Tg), and temperate Eurasia (3 ± 3 Tg), and the largest reductions are observed over China (−6 ± 3 Tg) and India (−2 ± 3 Tg). We find comparable emission changes in 2021, relative to 2019, except for tropical and temperate South America where emissions increased by 9 ± 4 and 4 ± 3 Tg, respectively, and for temperate North America where emissions increased by 5 ± 2 Tg. The elevated contributions we saw in 2020 over the western half of Africa (−5 ± 3 Tg) are substantially reduced in 2021, compared to our 2019 baseline. We find statistically significant positive correlations between anomalies of tropical methane emissions and groundwater, consistent with recent studies that have highlighted a growing role for microbial sources over the tropics. Emission reductions over India and China are expected in 2020 due to the Covid-19 lockdown but continued in 2021, which we do not currently understand. To investigate the role of reduced OH concentrations during the Covid-19 lockdown in 2020 on the elevated atmospheric methane growth in 2020–2021, we extended our inversion state vector to include monthly scaling factors for OH concentrations over six latitude bands. During 2020, we find that tropospheric OH is reduced by 1.4 ± 1.7 % relative to the corresponding 2019 baseline value. The corresponding revised global growth of a posteriori methane emissions in 2020 decreased by 34 % to 17.9 ± 13.2 Tg, relative to the a posteriori value that we inferred using fixed climatological OH values, consistent with sensitivity tests using the OH climatology inversion using reduced values for OH. The counter statement is that 66 % of the global increase in atmospheric methane during 2020 was due to increased emissions, particularly from tropical regions. Regional flux differences between the joint methane–OH inversion and the OH climatology inversion in 2020 are typically much smaller than 10 %. We find that OH is reduced by a much smaller amount during 2021 than in 2020, representing about 10 % of the growth of atmospheric methane in that year. Therefore, we conclude that most of the observed increase in atmospheric methane during 2020 and 2021 is due to increased emissions, with a significant contribution from reduced levels of OH.</p

    Lightweight and Secure PUF Key Storage Using Limits of Machine Learning

    Get PDF
    13th International Workshop, Nara, Japan, September 28 – October 1, 2011. ProceedingsA lightweight and secure key storage scheme using silicon Physical Unclonable Functions (PUFs) is described. To derive stable PUF bits from chip manufacturing variations, a lightweight error correction code (ECC) encoder / decoder is used. With a register count of 69, this codec core does not use any traditional error correction techniques and is 75% smaller than a previous provably secure implementation, and yet achieves robust environmental performance in 65nm FPGA and 0.13μ ASIC implementations. The security of the syndrome bits uses a new security argument that relies on what cannot be learned from a machine learning perspective. The number of Leaked Bits is determined for each Syndrome Word, reducible using Syndrome Distribution Shaping. The design is secure from a min-entropy standpoint against a machine-learning-equipped adversary that, given a ceiling of leaked bits, has a classification error bounded by ε. Numerical examples are given using latest machine learning results
    corecore