79 research outputs found

    Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells

    Get PDF
    In this work, the role of reduced graphene oxide (rGO) with hyperbranched surfactant and its hybridisation with multiwalled carbon nanotubes (MWCNTs) and platinum (Pt) nanoparticles (NPs) as counter electrode (CE) were investigated to determine the photovoltaic performance of dye-sensitised solar cells (DSSCs). Sodium 1,4-is(neopentyloxy)-3-(neopentyloxycarbonyl)- 1,4-dioxobutane-2-sulphonate (TC14) surfactant was utilised as dispersing and stabilising agent in electrochemical exfoliation to synthesise graphene oxide (GO) as initial solution for rGO production prior to its further hybridisation and fabrication as thin film. A chemical reduction process utilising hydrazine hydrate was conducted to produce rGO due to the low temperature process and water-based GO solution. Subsequently, hybrid solution was prepared by mixing 1 wt% MWCNTs into the produced rGO solution. TC14-rGO and TC14-rGO_MWCNTs hybrid solution were transferred into fluorine-doped tin oxide substrate to fabricate thin film by spraying deposition method. Finally, the CE films were prepared by coating with thin Pt NPs. Photoanode film was prepared by a two-step process: hydrothermal growth method to synthesise titanium dioxide nanowires (TiO2 NWs) and subsequent squeegee method to apply TiO2 NPs. According to solar simulator measurement, the highest energy conversion efficiency (η) was achieved by using CE-based TC14-rGO_MWCNTs/Pt (1.553%), with the highest short current density of 4.424 mA/cm2. The highest η was due to the high conductivity of CE hybrid film and the morphology of fabricated TiO2 NWs/TiO2 NPs. Consequently, the dye adsorption was high, and the photovoltaic performance of DSSCs was increased. This result also showed that rGO and rGO_MWCNTs hybrid can be used as considerable potential candidate materials to replace Pt gradually

    An Unusual Case of Accidental Ingestion of a Toothbrush

    Get PDF
    Introduction: Foreign body ingestion is a common presenting complaint in the emergency department. While ingestion of small foreign bodies like coins and button batteries is not uncommon, ingestion of long and rigid foreign bodies like toothbrush is very rare. Case presentation: We describe a 36-year-old man who presented to us after accidental ingestion of a toothbrush. The patient underwent urgent endoscopic removal; Psychiatric evaluation revealed an acute and transient psychotic disorder in him. Conclusion: Ingestion of long and rigid foreign bodies like a toothbrush is an uncommon entity. Such foreign bodies when ingested find it difficult to maneuver through the GI tract, which makes their spontaneous passage almost impossible. Their ingestion is associated with increased risk of impaction, perforation and, bleeding. Therefore, early removal of the ingested toothbrush is recommended before complications develop

    Adjunctive primary stenting of Zenith endograft limbs during endovascular abdominal aortic aneurysm repair: Implications for limb patency

    Get PDF
    ObjectiveEndograft limb occlusion is an infrequent but serious complication of endovascular abdominal aortic aneurysm (AAA) repair. The insertion of additional stents within the endograft limb may prevent future occlusion. This study evaluates limb patency with and without adjunctive stenting of endograft limbs at the time of endovascular AAA repair.MethodsWe performed a retrospective review of 248 patients who underwent endovascular abdominal aortic aneurysm repair with the Zenith AAA endovascular graft between 1999 and 2004. Among these patients, two groups were identified: 64 patients with adjunctive stents placed in 85 limbs and 184 patients without additional bare stent placement in endograft limbs at the time of endovascular AAA repair.ResultsWomen comprised 23% of stented and 11% of unstented patients (P = .02). The mean length of follow-up in the stented and unstented groups was 2.0 years. There were 13 instances of limb thrombosis in 13 patients (5.2% of patients, 2.7% of limbs), all in the unstented group. No limb occlusions occurred in the presence of adjunctive bare metal stents. Seventy-three percent of the occlusions occurred ≤6 months of endovascular AAA repair. Two patients (15%) had no symptoms of lower-extremity ischemia despite graft limb occlusion and did not undergo intervention. The others underwent thrombectomy (n = 2), thrombectomy with bare stent placement (n = 3), femoral-femoral bypass (n = 4), thrombolysis (n = 1), and thrombolysis with bare stent placement (n = 1). Of the seven who underwent thrombectomy or thrombolysis, three had no additional stents placed at the secondary procedure, and two of these three went on to rethrombose. By life-table analysis, primary patency at 3 years in the stented and nonstented limbs was 100% ± 0% and 94% ± 3%, respectively (P = .05).ConclusionsThe intraoperative insertion of additional bare metal stents appeared to eliminate the risk of thrombosis and was without complication. Of the 85 stented limbs in this series, not one occluded. The overall rate of limb thrombosis was low, with most limb occlusions occurring ≤6 months of stent-graft insertion, and would probably have been even lower had we been able to identify all high-risk cases for prophylactic adjunctive stenting. Limb occlusion denotes an underlying problem with the graft, which if left untreated after thrombectomy or thrombolysis will lead to rethrombosis. Postoperative imaging was of little value in detecting impending limb occlusion. Based on these findings, we believe one should identify and stent any limbs that appear to be at risk for thrombosis, but this study lacks the data to predict which limbs need stenting

    Hydrothermal from — Geology to Nanotechnology and Nanogeoscience (Part — II)

    Get PDF
    Hydrothermal process from a pure geologic science has now become one of the fast-emerging processing technologies to synthesize nanomaterials in the laboratory. Today it is an advanced technological tool, which facilitates to obtain nanomaterials and nanoparticles with desired size, shape, quality and functionality. In fact, hydrothermal technique has its bearing on the nature-inspired or geo-mimetic processes that are being employed extensively in the laboratory. The natural hydrothermal processes are acting ever since earth came into existence, and leading to the formation of a large variety of minerals, rocks and ores. Earth is a blue planet of the universe, where water is a major component which plays an important role in the formation of geological materials and hydrothermal circulation has always assisted by bacteria, photochemical and other related activities. The synthesis of advanced technological materials often occurs in the presence of biomolecules, proteins, organic ligands, DNA and amino acids. An understanding of nanogeoscience is becoming very relevant in the current context and is crossing into almost all the branches of geology including palaeoecology, mineralogy, environmental geology, energy geology, geochemistry, etc. Similarly, the hydrothermal processes in nature cover several branches of geology whether it is the origin of ores, minerals, rocks, but also life on the earth. In the present review, the authors discuss all the above aspects in detail with a future perspective of the field. Also, the authors have described the evolution of hydrothermal process from pure geology to the nanotechnology, nanogeoscience, nano-geopolymers, etc., with specific examples and depicted its relevance to the geologic science

    Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells

    Get PDF
    In this work, the role of reduced graphene oxide (rGO) with hyperbranched surfactant and its hybridisation with multiwalled carbon nanotubes (MWCNTs) and platinum (Pt) nanoparticles (NPs) as counter electrode (CE) were investigated to determine the photovoltaic performance of dye-sensitised solar cells (DSSCs). Sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)- 1,4-dioxobutane-2-sulphonate (TC14) surfactant was utilised as dispersing and stabilising agent in electrochemical exfoliation to synthesise graphene oxide (GO) as initial solution for rGO production prior to its further hybridisation and fabrication as thin film. A chemical reduction process utilising hydrazine hydrate was conducted to produce rGO due to the low temperature process and water-based GO solution. Subsequently, hybrid solution was prepared by mixing 1 wt% MWCNTs into the produced rGO solution. TC14-rGO and TC14-rGO_MWCNTs hybrid solution were transferred into fluorine-doped tin oxide substrate to fabricate thin film by spraying deposition method. Finally, the CE films were prepared by coating with thin Pt NPs. Photoanode film was prepared by a two-step process: hydrothermal growth method to synthesise titanium dioxide nanowires (TiO2 NWs) and subsequent squeegee method to apply TiO2 NPs. According to solar simulator measurement, the highest energy conversion efficiency (η) was achieved by using CE-based TC14-rGO_MWCNTs/Pt (1.553%), with the highest short current density of 4.424 mA/cm2 . The highest η was due to the high conductivity of CE hybrid film and the morphology of fabricated TiO2 NWs/TiO2 NPs. Consequently, the dye adsorption was high, and the photovoltaic performance of DSSCs was increased. This result also showed that rGO and rGO_MWCNTs hybrid can be used as considerable potential candidate materials to replace Pt gradually

    Summation of connectivity strengths in the visual cortex reveals stability of neuronal microcircuits after plasticity

    Get PDF
    Abstract : Background: Within sensory systems, neurons are continuously affected by environmental stimulation. Recently, we showed that, on cell-pair basis, visual adaptation modulates the connectivity strength between similarly tuned neurons to orientation and we suggested that, on a larger scale, the connectivity strength between neurons forming sub-networks could be maintained after adaptation-induced-plasticity. In the present paper, based on the summation of the connectivity strengths, we sought to examine how, within cell-assemblies, functional connectivity is regulated during an exposure-based adaptation. Results: Using intrinsic optical imaging combined with electrophysiological recordings following the reconfiguration of the maps of the primary visual cortex by long stimulus exposure, we found that within functionally connected cells, the summed connectivity strengths remain almost equal although connections among individual pairs are modified. Neuronal selectivity appears to be strongly associated with neuronal connectivity in a “homeodynamic” manner which maintains the stability of cortical functional relationships after experience-dependent plasticity. Conclusions: Our results support the “homeostatic plasticity concept” giving new perspectives on how the summation in visual cortex leads to the stability within labile neuronal ensembles, depending on the newly acquired properties by neurons

    Dissection of the Transformation of Primary Human Hematopoietic Cells by the Oncogene NUP98-HOXA9

    Get PDF
    NUP98-HOXA9 is the prototype of a group of oncoproteins associated with acute myeloid leukemia. It consists of an N-terminal portion of NUP98 fused to the homeodomain of HOXA9 and is believed to act as an aberrant transcription factor that binds DNA through the homeodomain. Here we show that NUP98-HOXA9 can regulate transcription without binding to DNA. In order to determine the relative contributions of the NUP98 and HOXA9 portions to the transforming ability of NUP98-HOXA9, the effects of NUP98-HOXA9 on primary human CD34+ cells were dissected and compared to those of wild-type HOXA9. In contrast to previous findings in mouse cells, HOXA9 had only mild effects on the differentiation and proliferation of primary human hematopoietic cells. The ability of NUP98-HOXA9 to disrupt the differentiation of primary human CD34+ cells was found to depend primarily on the NUP98 portion, whereas induction of long-term proliferation required both the NUP98 moiety and an intact homeodomain. Using oligonucleotide microarrays in primary human CD34+ cells, a group of genes was identified whose dysregulation by NUP98-HOXA9 is attributable primarily to the NUP98 portion. These include RAP1A, HEY1, and PTGS2 (COX-2). Their functions may reflect the contribution of the NUP98 moiety of NUP98-HOXA9 to leukemic transformation. Taken together, these results suggest that the effects of NUP98-HOXA9 on gene transcription and cell transformation are mediated by at least two distinct mechanisms: one that involves promoter binding through the homeodomain with direct transcriptional activation, and another that depends predominantly on the NUP98 moiety and does not involve direct DNA binding

    A systematic review of dietary, nutritional, and physical activity interventions for the prevention of prostate cancer progression and mortality

    Get PDF
    PURPOSE: Given the long-term, although potentially fatal, nature of prostate cancer, there is increasing observational evidence for the reduction in disease progression and mortality through changes in lifestyle factors. METHODS: We systematically reviewed dietary, nutritional, and physical activity randomized interventions aimed at modifying prostate cancer progression and disease-specific mortality, including a detailed assessment of risk of bias and methodological quality. RESULTS: Forty-four randomized controlled trials of lifestyle interventions, with prostate cancer progression or mortality outcomes, were identified. Substantial heterogeneity of the data prevented a meta-analysis. The included trials involved 3,418 prostate cancer patients, median 64 men per trial, from 13 countries. A trial of a nutritional supplement of pomegranate seed, green tea, broccoli, and turmeric; a trial comparing flaxseed, low-fat diet, flaxseed, and low-fat diet versus usual diet; and a trial supplementing soy, lycopene, selenium, and coenzyme Q10, all demonstrated beneficial effects. These trials were also assessed as having low risk of bias and high methodological quality (as were seven other trials with no evidence of benefit). The remaining trials were either underpowered, at high or unclear risk of bias, inadequately reported, of short duration or measured surrogate outcomes of unproven relationship to mortality or disease progression, which precluded any benefits reported being reliable. CONCLUSION: Large, well-designed randomized trials with clinical endpoints are recommended for lifestyle modification interventions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10552-015-0659-4) contains supplementary material, which is available to authorized users

    Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015)

    Full text link
    corecore