38 research outputs found
Bioclimatic Design and Advanced Strategies' Impacts on Energy Performance of Residential Buildings
The construction sector covers a significant percentage of the energy consumption in the world. Human actions on energy use are gradually being identified as the primary cause of climate change, global warming, and significant environmental changes. In response to these problems, the concept of sustainability has become one of the most crucial solutions for reducing the construction sector's high energy demand. Bioclimatic architecture is a sustainability approach that brings forward the strategies of vernacular architecture into the present by adapting the building systems to their climatic and topographic conditions. It is also an option for affecting the building sector in Turkey to prevent energy overconsumption by initiating efficiency improvements. This study examines the design requirements and physical characteristics of a building in the Marmara region (Turkey) and how these features impact its overall energy consumption. The case study building is a 9 storey apartment building in Erenköy, İstanbul, located in the humid-temperate climatic region of Turkey. Since that, the design scenarios consisting of different bioclimatic strategy combinations are chosen about this climatic region's features. The software DesignBuilder, empowered with an EnergyPlus simulation engine, is used to test the design scenarios' impacts on final energy consumption. The present condition of the case study building is monitored to calculate its energy consumption to evaluate the difference between the design scenarios. The impact on the primary energy use of different passive strategies, HVAC systems, electricity generation, and a bioclimatic set of standards implemented to the building was then assessed using parametric analysis of various scenarios. The results showed that the combination of passive strategies with earth pipe installation and thermal assisted radiant floors reduced the energy use by approximately 30. Passive strategies significantly impact the residential building systems' energy efficiency showing how bioclimatic architecture criteria can meet the requirements of high-efficiency standards in the humid-temperate climatic region of Turkey
Energy performance retrofits targeting national strategy development for typical Turkish school building
Today, most existing buildings should be retrofitted to reduce the negative impact on the environment. According to the EPBD, Member States should prepare national action plans to increase nZEB. Therefore existing buildings must go under deep refurbishment. Educational facilities are a critical segment of the public sector, and a frequently used building type with high energy needs. In Turkey, more than 17 million students spend the majority of their time in school buildings, hence increasing energy efficiency in existing educational buildings not only contributes to the environment and can create healthy and comfortable indoor conditions for the students, but also creates an awareness of the youth and increases their learning performance. This study focuses on analyzing the effects of various retrofitting applications of the building envelope and HVAC systems on the energy performance of a school building to improve existing energy consumptions. Analysis of the building envelope is an important primary step towards achieving a low energy level, as other energy efficiency measures such as buildings' HVAC systems’ efficiencies. The aim is to reduce the heating and cooling demand of the selected building and to increase its energy performance. The analysis of the case study showed that there is no insulation layer on the outer wall as a result of the measurements. Therefore, the first step is to observe how the appropriate insulation layer affects the energy performance of the building. The methodology consists of energy modeling of the case study building in DesignBuilder and obtaining energy performance results by EnergyPlus software. Various retrofit scenarios were prepared into packages which include alternatives of thermal characteristics of the opaque elements such as external walls and roof, application of different glazing units, and implementation of solar control elements. These variables were combined and compared in terms of their effects on total primary energy consumption, heating and cooling demand. Based on the results, technical suggestions were given according to the best performing scenarios. It is expected that the research outcomes will contribute to the studies to improve the energy performance in educational buildings
Validation process of energy performance simulation a Turkish school building case
Buildings produce one-third of the world's carbon emissions. It is estimated that the energy needs of buildings will increase by 40 until 2040 unless measures are taken. A significant portion of the energy in Turkey is consumed by non-residential construction sectors such as educational buildings. Therefore, efforts to improve the energy performance of educational buildings are essential to minimize the environmental impacts of the building stock. Building's energy simulation provides the possibility of testing various scenarios to define their pros and cons. However, the difference between the simulation results and the actual energy consumption should be minimized in practice. The study aims to monitor energy consumption and validate the simulation results of typical school buildings in Istanbul, Turkey. The approach consists of creating dynamic energy performance simulation models and validating with onsite measurements, energy bills and climatic data of the measurement period. At the first step, the detailed schedule of the occupants and mechanical systems, the building envelope materials, the lighting system, devices information, capacity, and efficiency values of mechanical systems and electrical equipment were obtained and defined in the DesignBuilder software. The U-values of the exterior walls were obtained through in-site measurements. In the next step, interior temperature, relative humidity, and CO2 in the building was measured based on related standards and regulations (ISO 7726 and ASHRAE Guideline 14). As a result, the validated energy model based on a comparison of simulation and measured data can be applied and tested to achieve a high energy performance level in the school building
Variation H452Y in HTR2A gene affects immediate visual memory
Serotonin and its receptors, including the 5-Hydroxytryptamine Receptor 2A encoded by the HTR2A gene, are important for learning and memory in animals and humans. Polymorphic variation in the HTR2A gene, which encodes the 5-HT2Aserotonin receptor, has previously been shown to associate with some memory traits, in particular effecting delayed verbal memory. In the current study we have examined the HTR2A His452Tyr (H452Y) substitution for association in a cohort of healthy individuals whose memory traits were assessed using a comprehensive battery of memory tests including, but not limited to, measures of prospective and retrospective memory. Although we failed to replicate previous findings of an effect of the polymorphism on delayed verbal memory, we found a significant association between the HTR2A H452Y polymorphism and immediate visual memory, showing that the heterozygous genotype is associated with poorer immediate visual memory, with delayed visual memory unaffected, although, with correction for multiple testing, this no longer passed significance thresholds. No HTR2A Tyr/Tyr individuals were detected in this cohort due to the low minor allele frequency
Quantification of AMPA receptor subunits and RNA editing-related proteins in the J20 mouse model of Alzheimer’s disease by capillary western blotting
IntroductionAccurate modelling of molecular changes in Alzheimer’s disease (AD) dementia is crucial for understanding the mechanisms driving neuronal pathology and for developing treatments. Synaptic dysfunction has long been implicated as a mechanism underpinning memory dysfunction in AD and may result in part from changes in adenosine deaminase acting on RNA (ADAR) mediated RNA editing of the GluA2 subunit of AMPA receptors and changes in AMPA receptor function at the post synaptic cleft. However, few studies have investigated changes in proteins which influence RNA editing and notably, AD studies that focus on studying changes in protein expression, rather than changes in mRNA, often use traditional western blotting.MethodsHere, we demonstrate the value of automated capillary western blotting to investigate the protein expression of AMPA receptor subunits (GluA1-4), the ADAR RNA editing proteins (ADAR1-3), and proteins known to regulate RNA editing (PIN1, WWP2, FXR1P, and CREB1), in the J20 AD mouse model. We describe extensive optimisation and validation of the automated capillary western blotting method, demonstrating the use of total protein to normalise protein load, in addition to characterising the optimal protein/antibody concentrations to ensure accurate protein quantification. Following this, we assessed changes in proteins of interest in the hippocampus of 44-week-old J20 AD mice.ResultsWe observed an increase in the expression of ADAR1 p110 and GluA3 and a decrease in ADAR2 in the hippocampus of 44-week-old J20 mice. These changes signify a shift in the balance of proteins that play a critical role at the synapse. Regression analysis revealed unique J20-specific correlations between changes in AMPA receptor subunits, ADAR enzymes, and proteins that regulate ADAR stability in J20 mice, highlighting potential mechanisms mediating RNA-editing changes found in AD.DiscussionOur findings in J20 mice generally reflect changes seen in the human AD brain. This study underlines the importance of novel techniques, like automated capillary western blotting, to assess protein expression in AD. It also provides further evidence to support the hypothesis that a dysregulation in RNA editing-related proteins may play a role in the initiation and/or progression of AD
Foraging ecology of Eurasian lynx populations in southwest Asia: Conservation implications for a diet specialist
Intraspecific variation in key traits of widespread species can be hard to predict, if populations have been very little studied in most of the distribution range. Asian populations of the Eurasian lynx (Lynx lynx), one of the most widespread felids worldwide, are such a case in point. We investigated the diet of Eurasian lynx from feces collected Mediterranean, mixed forest‐steppe, and subalpine ecosystems of Turkey. We studied prey preferences and functional responses using prey densities obtained from Random Encounter Modelling. Our analysis revealed that the main prey was brown hare (Lepus europaeus) in all three areas (78%–99% of biomass consumed) and lynx showed a strong preference for brown hare (Chesson's selectivity index, α = 0.90–0.99). Cannibalism contributed at least 5% in two study areas. The type II functional response of lynx populations in Turkey was similar to the Canada lynx (Lynx canadensis) and daily food intake in grams per lynx matched that of Canada lynx and Iberian lynx (Lynx pardinus), both lagomorph specialists, rather than those of Eurasian lynx from Europe. Therefore, lynx in Turkey may be better described as a lagomorph specialist even though it coexists with ungulate prey. We suggest that ungulate‐based foraging ecology of Eurasian lynx in Europe may be a recent adjustment to the availability of high densities of ungulates and cannot be representative for other regions like Turkey. The status of lagomorphs should become an essential component of conservation activities targeted at Eurasian lynx or when using this species as a flagship species for landscape preservation