812 research outputs found

    Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    Get PDF
    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterize helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. These breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices

    First Results of the Phase II SIMPLE Dark Matter Search

    Full text link
    We report results of a 14.1 kgd measurement with 15 superheated droplet detectors of total active mass 0.208 kg, comprising the first stage of a 30 kgd Phase II experiment. In combination with the results of the neutron-spin sensitive XENON10 experiment, these results yield a limit of |a_p| < 0.32 for M_W = 50 GeV/c2 on the spin-dependent sector of weakly interacting massive particle-nucleus interactions with a 50% reduction in the previously allowed region of the phase space formerly defined by XENON, KIMS and PICASSO. In the spin-independent sector, a limit of 2.3x10-5 pb at M_W = 45 GeV/c2 is obtained.Comment: 4 pages, 4 figures; PRL-accepted version with corrected SI contour (Fig. 4

    Final Analysis and Results of the Phase II SIMPLE Dark Matter Search

    Full text link
    We report the final results of the Phase II SIMPLE measurements, comprising two run stages of 15 superheated droplet detectors each, the second stage including an improved neutron shielding. The analyses includes a refined signal analysis, and revised nucleation efficiency based on reanalysis of previously-reported monochromatic neutron irradiations. The combined results yield a contour minimum of \sigma_{p} = 4.2 x 10^-3 pb at 35 GeV/c^2 on the spin-dependent sector of WIMP-proton interactions, the most restrictive to date from a direct search experiment and overlapping for the first time results previously obtained only indirectly. In the spin-independent sector, a minimum of 3.6 x 10^-6 pb at 35 GeV/c^2 is achieved, with the exclusion contour challenging the recent CoGeNT region of current interest.Comment: revised, PRL-accepted version with slightly weakened limit contour

    The SIMPLE Phase II Dark Matter Search

    Full text link
    Phase II of SIMPLE (Superheated Instrument for Massive ParticLe Experiments) searched for astroparticle dark matter using superheated liquid C2_{2}ClF5_{5} droplet detectors. Each droplet generally requires an energy deposition with linear energy transfer (LET) \gtrsim 150 keV/μ\mum for a liquid-to-gas phase transition, providing an intrinsic rejection against minimum ionizing particles of order 1010^{-10}, and reducing the backgrounds to primarily α\alpha and neutron-induced recoil events. The droplet phase transition generates a millimetric-sized gas bubble which is recorded by acoustic means. We describe the SIMPLE detectors, their acoustic instrumentation, and the characterizations, signal analysis and data selection which yield a particle-induced, "true nucleation" event detection efficiency of better than 97% at a 95% C.L. The recoil-α\alpha event discrimination, determined using detectors first irradiated with neutrons and then doped with alpha emitters, provides a recoil identification of better than 99%; it differs from those of COUPP and PICASSO primarily as a result of their different liquids with lower critical LETs. The science measurements, comprising two shielded arrays of fifteen detectors each and a total exposure of 27.77 kgd, are detailed. Removal of the 1.94 kgd Stage 1 installation period data, which had previously been mistakenly included in the data, reduces the science exposure from 20.18 to 18.24 kgd and provides new contour minima of σp\sigma_{p} = 4.3 ×\times 103^{-3} pb at 35 GeV/c2^{2} in the spin-dependent sector of WIMP-proton interactions and σN\sigma_{N} = 3.6 ×\times 106^{-6} pb at 35 GeV/c2^{2} in the spin-independent sector. These results are examined with respect to the fluorine spin and halo parameters used in the previous data analysis.Comment: 20 pages, 19 figures; accepted Physical Review

    The effect of cocaine on gastric mucosal PGE2, LTC4 and ulcerations

    Get PDF
    The association between cocaine use and acute gastroduodenal perforation is known. The effect of cocaine and stress on gastric mucosal ulceration and the levels of prostaglandin E2 (PGE2) and leukotriene C4 (LTC4) was studied in 40 Sprague–Dawley rats. Controls received intraperitoneal (i.p.) saline, ten received i.p. cocaine (35 mg/kg), ten were stressed by the cold restraint method, and ten had i.p. cocaine and stress. Cocaine alone did not induce ulceration, but decreased PGE2 levels. Stress alone caused ulceration, but was not associated with a change in either PGE2 or LTC4 levels. When combined with stress, however, cocaine caused a three-fold increase in ulceration and a significant increase in PGE2 and LTC4 levels. Stress may predispose the cocaine addict to loss of gastroduodenal mucosal integrity, which is related to an imbalance of PGE2 and LTC4 synthesis

    PHIL photoinjector test line

    Full text link
    LAL is now equiped with its own platform for photoinjectors tests and Research and Developement, named PHIL (PHotoInjectors at LAL). This facility has two main purposes: push the limits of the photoinjectors performances working on both the design and the associated technology and provide a low energy (MeV) short pulses (ps) electron beam for the interested users. Another very important goal of this machine will be to provide an opportunity to form accelerator physics students, working in a high technology environment. To achieve this goal a test line was realised equipped with an RF source, magnets and beam diagnostics. In this article we will desrcibe the PHIL beamline and its characteristics together with the description of the first two photoinjector realised in LAL and tested: the ALPHAX and the PHIN RF Guns

    Complementary Patents and Market Structure

    Get PDF
    Many high technology goods are based on standards that require several essential patents owned by different IP holders. This gives rise to a complements and a double mark-up problem. We compare the welfare effects of two different business strategies dealing with these problems. Vertical integration of an IP holder and a downstream producer solves the double mark-up problem between these firms. Nevertheless, it may raise royalty rates and reduce output as compared to non-integration. Horizontal integration of IP holders solves the complements problem but not the double mark-up problem. Vertical integration discourages entry and reduces innovation incentives, while horizontal integration always benefits from entry and innovatio

    Spectrally resolved multi-channel contributions to the harmonic emission in N 2

    Get PDF
    International audienceWhen generated in molecules, high-order harmonics can be emitted through different ionization channels. The coherent and ultrafast electron dynamics occurring in the ion during the generation process is directly imprinted in the harmonic signal, i.e. in its amplitude and spectral phase. In aligned N2 molecules, we find evidence for a fast variation of this phase as a function of the harmonic order when varying the driving laser intensity. Basing our analysis on a three-step model, we find that this phase variation is a signature of transitions from a single- to a multi-channel regime. In particular, we show that significant nuclear dynamics may occur in the ionization channels on the attosecond timescale, affecting both the amplitude and the phase of the harmonic signal

    Molecular orbital tomography from multi-channel harmonic emission in N2

    Get PDF
    International audienceHigh-order harmonic generation in aligned molecules can be used as an ultrafast probe of molecular structure and dynamics. By characterizing the emitted signal , one can retrieve information about electronic and nuclear dynamics occurring in the molecule at the attosecond timescale. In this paper , we discuss the theoretical and experimental aspects of molecular orbital tomography in N 2 and investigate the influence of multi-channel ionization on the orbital imaging. By analyzing the spectral phase of the harmonic emission as a function of the driving laser intensity , we address two distinct cases , which in principle allow the orbital reconstruction. First , the contributions from two molecular orbitals could be disentangled in the real and imaginary parts of the measured dipole , making it possible to reconstruct both orbitals. Second , by decreasing the driving laser intensity , the transition from a multi-channel to a single-channel ionization regime is shown. The highest occupied molecular orbital may then be selected as the only one contributing efficiently to the harmonic emission. The latter approach paves the way towards the generalization of tomography to more complex systems

    Nonlinear beam self-cleaning in a coupled cavity composite laser based on multimode fiber

    Get PDF
    We study a coupled cavity laser configuration where a passively Q-switched Nd:YAG microchip laser is combined with an extended cavity, including a doped multimode fiber. For appropriate coupling levels with the extended cavity, we observed that beam selfcleaning was induced in the multimode fiber thanks to nonlinear modal coupling, leading to a quasi-single mode laser output. In the regime of beam self-cleaning, laser pulse duration was reduced from 525 to 225 ps. We also observed a Q-switched mode-locked operation, where spatial self-cleaning was accompanied by far-detuned nonlinear frequency conversion in the active multimode fiber
    corecore