154 research outputs found

    Semileptonic B→D∗∗B \to D^{**} decays in Lattice QCD : a feasibility study and first results

    Get PDF
    We compute the decays B→D0∗{B\to D^\ast_0} and B→D2∗{B\to D^\ast_2} with finite masses for the bb and cc quarks. We first discuss the spectral properties of both the BB meson as a function of its momentum and of the D0∗D^\ast_0 and D2∗D^\ast_2 at rest. We compute the theoretical formulae leading to the decay amplitudes from the three-point and two-point correlators. We then compute the amplitudes at zero recoil of B→D0∗{B\to D^\ast_0} which turns out not to be vanishing contrary to what happens in the heavy quark limit. This opens a possibility to get a better agreement with experiment. To improve the continuum limit we have added a set of data with smaller lattice spacing. The B→D2∗{B\to D^\ast_2} vanishes at zero recoil and we show a convincing signal but only slightly more than 1 sigma from 0. In order to reach quantitatively significant results, we plan to fully exploit smaller lattice spacings as well as another lattice regularization.Comment: 31 pages with 15 figures ; sections 5 and 6 revised and update

    Unknown Health States Recognition With Collective Decision Based Deep Learning Networks In Predictive Maintenance Applications

    Full text link
    At present, decision making solutions developed based on deep learning (DL) models have received extensive attention in predictive maintenance (PM) applications along with the rapid improvement of computing power. Relying on the superior properties of shared weights and spatial pooling, Convolutional Neural Network (CNN) can learn effective representations of health states from industrial data. Many developed CNN-based schemes, such as advanced CNNs that introduce residual learning and multi-scale learning, have shown good performance in health state recognition tasks under the assumption that all the classes are known. However, these schemes have no ability to deal with new abnormal samples that belong to state classes not part of the training set. In this paper, a collective decision framework for different CNNs is proposed. It is based on a One-vs-Rest network (OVRN) to simultaneously achieve classification of known and unknown health states. OVRN learn state-specific discriminative features and enhance the ability to reject new abnormal samples incorporated to different CNNs. According to the validation results on the public dataset of Tennessee Eastman Process (TEP), the proposed CNN-based decision schemes incorporating OVRN have outstanding recognition ability for samples of unknown heath states, while maintaining satisfactory accuracy on known states. The results show that the new DL framework outperforms conventional CNNs, and the one based on residual and multi-scale learning has the best overall performance

    Determination of the moments of the proton charge density

    Full text link
    A global analysis of proton electric form factor experimental data from Rosenbluth separation and low squared four-momentum transfer experiments is discussed for the evaluation of the spatial moments of the proton charge density based on the recently published integral method \cite{Hob20}. Specific attention is paid to the evaluation of the systematic errors of the method, particularly the sensitivity to the choice of the mathematical expression of the form factor fitting function. Within this comprehensive analysis of proton electric form factor data, the moments of the proton charge density are determined for integer order moments, particularly: ⟹r2⟩\langle r^2 \rangle=0.682(02)Sta._{Sta.}(11)Sys._{Sys.}~fm2^2, ⟹r3⟩\langle r^3 \rangle=0.797(10)Sta._{Sta.}(58)Sys._{Sys.}~fm3^3, and ⟹r4⟩\langle r^4 \rangle=1.02(05)Sta._{Sta.}(31)Sys._{Sys.}~fm4^4. This analysis leads to the proton charge radius 0.8459(12)Sta._{Sta.}(76)Sys._{Sys.}~fm once relativistic effects are taken into account.Comment: 10 pages, 3 figure

    Beam Charge Asymmetries for Deeply Virtual Compton Scattering on the Proton at CLAS12

    Full text link
    The parameterization of the nucleon structure through Generalized Parton Distributions (GPDs) shed a new light on the nucleon internal dynamics. For its direct interpretation, Deeply Virtual Compton Scattering (DVCS) is the golden channel for GPDs investigation. The DVCS process interferes with the Bethe-Heitler (BH) mechanism to constitute the leading order amplitude of the eN→eNÎłeN \to eN\gamma process. The study of the epÎłep\gamma reaction with polarized positron and electron beams gives a complete set of unique observables to unravel the different contributions to the epÎłep \gamma cross section. This separates the different reaction amplitudes, providing a direct access to their real and imaginary parts which procures crucial constraints on the model dependences and associated systematic uncertainties on GPDs extraction. The real part of the BH-DVCS interference amplitude is particularly sensitive to the DD-term which parameterizes the Gravitational Form Factors of the nucleon. The separation of the imaginary parts of the interference and DVCS amplitudes provides insights on possible higher-twist effects. We propose to measure the unpolarized and polarized Beam Charge Asymmetries (BCAs) of the e⃗±p→e±pÎł\vec{e}^{\pm}p \to e^{\pm}p \gamma process on an unpolarized hydrogen target with {\tt CLAS12}, using polarized positron and electron beams at 10.6~GeV. The azimuthal and tt-dependences of the unpolarized and polarized BCAs will be measured over a large (xB,Q2)(x_B,Q^2) phase space using a 100 day run with a luminosity of 0.66×1035\times 10^{35}cm−2⋅^{-2}\cdots−1^{-1}.Comment: Proposal to the Jefferson Lab Program Advisory Committee (PAC51

    Evaluation of the genotoxic and antigenotoxic potential of Melissa officinalis in mice

    Get PDF
    Melissa officinalis (L.) (Lamiaceae), a plant known as the lemon balm, is native to the east Mediterranean region and west Asia. Also found in tropical countries, such as Brazil, where it is popularly known as “erva-cidreira” or “melissa”, it is widely used in aqueous- or alcoholic-extract form in the treatment of various disorders. The aim was to investigate in vivo its antigenotoxicity and antimutagenicity, as well as its genotoxic/mutagenic potential through comet and micronucleus assaying. CF-1 male mice were treated with ethanolic (Mo-EE) (250 or 500 mg/kg) or aqueous (Mo-AE) (100 mg/kg) solutions of an M. officinalis extract for 2 weeks, prior to treatment with saline or Methyl methanesulfonate (MMS) doses by intraperitoneal injection. Irrespective of the doses, no genotoxic or mutagenic effects were observed in blood and bone-marrow samples. Although Mo-EE exerted an antigenotoxic effect on the blood cells of mice treated with the alkylating agent (MMS) in all the doses, this was not so with Mo-AE. Micronucleus testing revealed the protector effect of Mo-EE, but only when administered at the highest dose. The implication that an ethanolic extract of M. officinalis has antigenotoxic/antimutagenic properties is an indication of its medicinal relevance

    Association of respiratory symptoms and lung function with occupation in the multinational Burden of Obstructive Lung Disease (BOLD) study

    Get PDF
    Background Chronic obstructive pulmonary disease has been associated with exposures in the workplace. We aimed to assess the association of respiratory symptoms and lung function with occupation in the Burden of Obstructive Lung Disease study. Methods We analysed cross-sectional data from 28 823 adults (≄40 years) in 34 countries. We considered 11 occupations and grouped them by likelihood of exposure to organic dusts, inorganic dusts and fumes. The association of chronic cough, chronic phlegm, wheeze, dyspnoea, forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1)/FVC with occupation was assessed, per study site, using multivariable regression. These estimates were then meta-analysed. Sensitivity analyses explored differences between sexes and gross national income. Results Overall, working in settings with potentially high exposure to dusts or fumes was associated with respiratory symptoms but not lung function differences. The most common occupation was farming. Compared to people not working in any of the 11 considered occupations, those who were farmers for ≄20 years were more likely to have chronic cough (OR 1.52, 95% CI 1.19–1.94), wheeze (OR 1.37, 95% CI 1.16–1.63) and dyspnoea (OR 1.83, 95% CI 1.53–2.20), but not lower FVC (ÎČ=0.02 L, 95% CI −0.02–0.06 L) or lower FEV1/FVC (ÎČ=0.04%, 95% CI −0.49–0.58%). Some findings differed by sex and gross national income. Conclusion At a population level, the occupational exposures considered in this study do not appear to be major determinants of differences in lung function, although they are associated with more respiratory symptoms. Because not all work settings were included in this study, respiratory surveillance should still be encouraged among high-risk dusty and fume job workers, especially in low- and middle-income countries.publishedVersio
    • 

    corecore