11 research outputs found

    Faba Bean Cultivation – Revealing Novel Managing Practices for More Sustainable and Competitive European Cropping Systems

    Get PDF
    Faba beans are highly nutritious because of their high protein content: they are a good source of mineral nutrients, vitamins, and numerous bioactive compounds. Equally important is the contribution of faba bean in maintaining the sustainability of agricultural systems, as it is highly efficient in the symbiotic fixation of atmospheric nitrogen. This article provides an overview of factors influencing faba bean yield and quality, and addresses the main biotic and abiotic constraints. It also reviews the factors relating to the availability of genetic material and the agronomic features of faba bean production that contribute to high yield and the improvement of European cropping systems. Emphasis is to the importance of using new high-yielding cultivars that are characterized by a high protein content, low antinutritional compound content, and resistance to biotic and abiotic stresses. New cultivars should combine several of these characteristics if an increased and more stable production of faba bean in specific agroecological zones is to be achieved. Considering that climate change is also gradually affecting many European regions, it is imperative to breed elite cultivars that feature a higher abiotic–biotic stress resistance and nutritional value than currently used cultivars. Improved agronomical practices for faba bean crops, such as crop establishment and plant density, fertilization and irrigation regime, weed, pest and disease management, harvesting time, and harvesting practices are also addressed, since they play a crucial role in both the production and quality of faba bean

    Environmental and Cultivation Factors Affect the Morphology, Architecture and Performance of Root Systems in Soilless Grown Plants

    No full text
    Soilless culture systems are currently one of the fastest-growing sectors in horticulture. The plant roots are confined into a specific rootzone and are exposed to environmental changes and cultivation factors. The recent scientific evidence regarding the effects of several environmental and cultivation factors on the morphology, architecture, and performance of the root system of plants grown in SCS are the objectives of this study. The effect of root restriction, nutrient solution, irrigation frequency, rootzone temperature, oxygenation, vapour pressure deficit, lighting, rootzone pH, root exudates, CO2, and beneficiary microorganisms on the functionality and performance of the root system are discussed. Overall, the main results of this review demonstrate that researchers have carried out great efforts in innovation to optimize SCS water and nutrients supply, proper temperature, and oxygen levels at the rootzone and effective plant–beneficiary microorganisms, while contributing to plant yields. Finally, this review analyses the new trends based on emerging technologies and various tools that might be exploited in a smart agriculture approach to improve root management in soilless cropping while procuring a deeper understanding of plant root–shoot communication

    Tripartite Relationships in Legume Crops Are Plant-Microorganism-Specific and Strongly Influenced by Salinity

    No full text
    This study investigated the effects of specific strains of two arbuscular mycorrhizae fungi (AMF) (Rhizophagus irregularis and Claroideoglomus claroideum) and of two plant growth-promoting bacteria (PGPB) (Rhizobium leguminosarum and Burkholderia spp.), supplied either individually or as combination of a mixture of both arbuscular mycorrhizae fungi with each bacteria on root morphology, growth and fresh grain yield in pea (Pisum sativum L.) plants. Inoculated and non-inoculated pea plants were subjected to two levels of salinity (0 and 50 mM) by the addition of sodium chloride into tap water. Prior to fresh grain harvesting the morphology of root system was analyzed and the dry matter of roots and shoots were individually measured in randomly selected plants. Fresh pods were individually harvested per each plant; fresh (green) grains were separately counted and weighted per each pod at each individual plant, and the average grain weight was calculated by dividing total grain weight of plant with the respective number of green grains. The raise of salinity in the irrigation water strongly diminished the growth of pea plants by significantly reducing weight, length, surface area and root volume of pea plants. The relationships of pea plants with beneficiary fungi and bacteria were specific to each microorganism and highly depended on the environment. We found that under saline conditions, Rhizophagus irregularis provided a better vegetative growth and a higher yield than Claroideoglomus claroideum. Although, single application of Burkolderia spp. provides a better vegetative growth than single application of Rhizobium leguminosarum the best results, in terms of growth and harvested yield, were still obtained by combined application of AM fungi with Rhizobium leguminosarum. This combination was able to sustain the average grain weight at the level of non-saline plants and provided a significantly higher yield than the control plants

    COMPARISON THE GRAFTING METHODS OF CUCUMBER SEEDLINGS (CUCUMIS SATIVUM L.) AND THEIR PERFORMANCE ON DRY MATTER PARTITIONING AND STAND ESTABLISHMENT RATE UNDER NACL STRESS

    No full text
    Cucumber variety (Ekron F1) was grafted onto a commercial rootstocks (Cucurbita maxima x C. moschata). Splice grafting (SG) and root pruning splice grafting (RPSG) were simultaneously applied. Two weeks after grafting, an equal number of each experimental unit was transplanted in to 200 cm3 plastic pots filled with vermiculite. The plants of each group were split in three equal subgroups and irrigated several times with equal amounts of the same nutrient solution (N 100 mgL-1, P mgL-1, K mgL-1) , but differing by each other by the amount of NaCl added in the nutrient solution (0, 50 and 100 mM). Root, stem and leaf dry matter was weighted, and leaf area of plants was measured. The grafting method showed a significant effect on the dry matter partitioning of grafted seedlings. Compared to splice grafted (SG), the root pruned splice grafted (RPSG) seedlings addressed a much higher amount of dry matter. The dry matter of transplanted seedlings was drastically reduced due to the increase of nutrient solution salinity, but still relatively higher value of dry matter were recorded in case of RPSG. RPSG seedlings showed a significantly higher dry matter partitioning, which was in favour of a quick stand establishment of seedling after transplanting

    AMF Inoculation Enhances Growth and Improves the Nutrient Uptake Rates of Transplanted, Salt-Stressed Tomato Seedlings

    No full text
    The study aimed to investigate the effects of commercially available AMF inoculate (Glomus sp. mixture) on the growth and the nutrient acquisition in tomato (Solanumlycopersicum L.) plants directly after transplanting and under different levels of salinity. Inoculated (AMF+) and non-inoculated (AMF−) tomato plants were subjected to three levels of NaCl salinity (0, 50, and 100 mM·NaCl). Seven days after transplanting, plants were analyzed for dry matter and RGR of whole plants and root systems. Leaf tissue was analyzed for mineral concentration before and after transplanting; leaf nutrient content and relative uptake rates (RUR) were calculated. AMF inoculation did not affect plant dry matter or RGR under fresh water-irrigation. The growth rate of AMF−plants did significantly decline under both moderate (77%) and severe (61%) salt stress compared to the fresh water-irrigated controls, while the decline was much less (88% and 75%,respectively)and statistically non-significant in salt-stressed AMF+ plants. Interestingly, root system dry matter of AMF+ plants (0.098 g plant–1) remained significantly greater under severe soil salinity compared to non-inoculated seedlings (0.082 g plant–1). The relative uptake rates of N, P, Mg, Ca, Mn, and Fe were enhanced in inoculated tomato seedlings and remained higher under (moderate) salt stress compared to AMF− plants This study suggests that inoculation with commercial AMF during nursery establishment contributes to alleviation of salt stress by maintaining a favorable nutrient profile. Therefore, nursery inoculation seems to be a viable solution to attenuate the effects of increasing soil salinity levels, especially in greenhouses with low natural abundance of AMF spores

    Scions impact biomass allocation and root enzymatic activity of rootstocks in grafted melon and watermelon plants

    No full text
    International audienceVegetable grafting is increasingly recognized as an effective and sustainable plant production alternative. Grafted plants usually show increased uptake of water and minerals compared with self-rooted plants, mostly thought a consequence of the vigorous rootstocks selected. However, while studies frequently addressed the effects of rootstocks on the performance of scions, knowledge on the influences of scions on biomass allocation, morphology, and metabolic activity of roots is rare. In particular, the plasticity of root traits affecting resource acquisition and its efficiency remains poorly understood. Two different rootstock species, Cucurbita maxima × Cucurbita moschata and Lagenaria siceraria, were grafted in combination with melon (Cucumis melo) and watermelon (Citrullus lanatus). Self-grafted rootstocks were used as control. Plant biomass and root traits were determined after destructive harvesting 30 and/or 60 days after grafting. Traits included biomass allocation, leaf and root morphology, potential activities of four extracellular enzymes on root tips and basal root segments, and root respiration. Successfully grafted scions increase the ratio of root to whole plant dry matter (RMF), and increased ratios of root length to whole plant dry matter (RLR) and to plant leaf area (RL : LA). In contrast, morphological root traits such as diameter, tissue density, and specific root length remain surprisingly stable, and thus scion-induced changes of those traits may only play a minor role for the beneficial effects of grafting in Cucurbitaceae. Incompatibility in melon/L. siceraria grafts, however, was likely responsible for the reduced root growth in combination with clear changes in root morphological traits. Reduced root respiration rates seem to be the effects of a non-compatible rootstock-scion combination rather than an active, C-efficiency increasing acclimation. In contrast, heterografts with melon and watermelon frequently resulted in root-stock-specific, often enhanced potential enzymatic activities of acid phosphatase, b-glucosidase, leucine-amino-peptidase, and N-acetylglucosaminidase both at root tips and basal parts of lateral roots-presenting a potential and complementary mechanism of grafted plants to enhance nutrient foraging. The studied melon and watermelon scions may thus increase the nutrient foraging capacity of grafted plants by fostering the Frontiers in Plant Science frontiersin.org 0

    DataSheet_1_Scions impact biomass allocation and root enzymatic activity of rootstocks in grafted melon and watermelon plants.pdf

    No full text
    Vegetable grafting is increasingly recognized as an effective and sustainable plant production alternative. Grafted plants usually show increased uptake of water and minerals compared with self-rooted plants, mostly thought a consequence of the vigorous rootstocks selected. However, while studies frequently addressed the effects of rootstocks on the performance of scions, knowledge on the influences of scions on biomass allocation, morphology, and metabolic activity of roots is rare. In particular, the plasticity of root traits affecting resource acquisition and its efficiency remains poorly understood. Two different rootstock species, Cucurbita maxima × Cucurbita moschata and Lagenaria siceraria, were grafted in combination with melon (Cucumis melo) and watermelon (Citrullus lanatus). Self-grafted rootstocks were used as control. Plant biomass and root traits were determined after destructive harvesting 30 and/or 60 days after grafting. Traits included biomass allocation, leaf and root morphology, potential activities of four extracellular enzymes on root tips and basal root segments, and root respiration. Successfully grafted scions increase the ratio of root to whole plant dry matter (RMF), and increased ratios of root length to whole plant dry matter (RLR) and to plant leaf area (RL : LA). In contrast, morphological root traits such as diameter, tissue density, and specific root length remain surprisingly stable, and thus scion-induced changes of those traits may only play a minor role for the beneficial effects of grafting in Cucurbitaceae. Incompatibility in melon/L. siceraria grafts, however, was likely responsible for the reduced root growth in combination with clear changes in root morphological traits. Reduced root respiration rates seem to be the effects of a non-compatible rootstock–scion combination rather than an active, C-efficiency increasing acclimation. In contrast, heterografts with melon and watermelon frequently resulted in root-stock-specific, often enhanced potential enzymatic activities of acid phosphatase, β-glucosidase, leucine-amino-peptidase, and N-acetyl-glucosaminidase both at root tips and basal parts of lateral roots—presenting a potential and complementary mechanism of grafted plants to enhance nutrient foraging. The studied melon and watermelon scions may thus increase the nutrient foraging capacity of grafted plants by fostering the relative allocation of C to the root system, and enhancing the extracellular enzymatic activities governed by roots or their rhizobiome.</p

    Environmental and Cultivation Factors Affect the Morphology, Architecture and Performance of Root Systems in Soilless Grown Plants

    No full text
    Soilless culture systems are currently one of the fastest-growing sectors in horticulture. The plant roots are confined into a specific rootzone and are exposed to environmental changes and cultivation factors. The recent scientific evidence regarding the effects of several environmental and cultivation factors on the morphology, architecture, and performance of the root system of plants grown in SCS are the objectives of this study. The effect of root restriction, nutrient solution, irrigation frequency, rootzone temperature, oxygenation, vapour pressure deficit, lighting, rootzone pH, root exudates, CO2, and beneficiary microorganisms on the functionality and performance of the root system are discussed. Overall, the main results of this review demonstrate that researchers have carried out great efforts in innovation to optimize SCS water and nutrients supply, proper temperature, and oxygen levels at the rootzone and effective plant-beneficiary microorganisms, while contributing to plant yields. Finally, this review analyses the new trends based on emerging technologies and various tools that might be exploited in a smart agriculture approach to improve root management in soilless cropping while procuring a deeper understanding of plant root-shoot communication

    Trait identification of faba bean ideotypes for Northern European environments

    Get PDF
    European pulse production faces a continued loss of cultivated area along with decreasing or stagnant yields. Vicia faba is a traditional legume with high genetic diversity cultivated in a wide range of European climates. Therefore V. faba is promising to identify stable and high yielding genotypes for specific target environments. The Nordic-Baltic region is challenging for legume growing due to short vegetation period and heat/drought stress in continental climates. Within the pan-European Eurolegume project a set of 18 V. faba accessions containing var. minor and major local landraces and modern cultivars of different geographical origin was evaluated in multi-environmental trials. The aim of this study was to identify ideotypes for Northern Europe and reveal key phenotypic traits conferring high yield potential and stability. Four target environmental clusters represented the range of Nordic growing conditions with yield levels from 128 gm−2 to 380 gm−2. Multivariate classification differentiated distinctive groups of var. minor and var. major accessions with few overlapping genotypes, the former having higher average yield, taller structure, more pods per node and longer flowering duration. Late sowing under long-day conditions above 55°N latitudes resulted in early flowering due to short vegetative development (650 °Cd). Extended flowering duration and tall stature were the most important traits conferring high yields. A negative trade-off between yield potential and yield stability was detected, with yield advantages of stress resistant genotypes only in a limited range of low yielding target environments (< 180 gm−2). The highest yielding accessions (Latvian var. minor landrace Bauska and var. major landrace Cēres) represented a favourable combination of yield potential and stability. High temperatures at flowering, within a range of average maximum July temperatures between 20.5–24.5 °C, were identified as most critical environmental variable depressing yield levels between 38.5 (var. major) and 56.2 (var. minor) gm−2 °C−1. It was concluded that Baltic landraces are promising ideotypes, with adapted flowering phenology and morphological structure, for increased V. faba yields in Nordic target environments.Trait identification of faba bean ideotypes for Northern European environmentssubmittedVersio
    corecore