686 research outputs found

    Staggered Wages and Output Dynamics under Disinflation.

    Get PDF
    We study the output costs of a reduction in monetary growth in a dynamic general equilibrium model with staggered wages. The money wage is fixed for two periods, and is chosen according to intertemporal optimization. Agents have labour market monopoly power. We show that the introduction of microfoundations helps to resolve the puzzle raised by directly postulated models, namely that disinflation in staggered pricing models causes a boom. In our model disinflation, whether unanticipated or anticipated, unambiguously causes a slump.WAGES ; INFLATION ; MONEY

    Controlling inflation with timid monetary-fiscal regime changes

    Get PDF
    Can monetary policy control inflation when both monetary and fiscal policies change over time? When monetary policy is active, a long-run fiscal principle entails flexibility in fiscal policy that preserves determinacy even when deviating from passive fiscal, substantially for brief periods or timidly for prolonged periods. To guarantee a unique equilibrium, monetary and fiscal policies must coordinate not only within but also across regimes, and not simply on being active or passive, but also on their extent. The amplitude of deviations from the active monetary/passive fiscal benchmark determines whether a regime is Ricardian: timid deviations do not imply wealth effects

    Walk on the wild side: Temporarily unstable paths and multiplicative sunspots

    Get PDF
    We propose a generalization of the rational expectations framework to allow for temporarily unstable paths. Our approach introduces multiplicative sunspot shocks and it yields drifting parameters and stochastic volatility. Then, we provide an econometric strategy to estimate this generalized model on the data. The methodology allows the data to choose between different possible alternatives: determinacy, indeterminacy, and temporary instability. We apply our methodology to US in?ation dynamics in the 1970s through the lens of a simple New Keynesian model. When temporarily unstable paths are allowed, the data unambiguously select them to explain the stag?ation period in the 1970s

    3D modelling of LASER hardening and tempering of hypo-eutectoid steels

    Get PDF
    In this paper a mathematical model solved by means of the finite differences method (FDM) for laser surface hardening of complex geometries is presented. The 3-D transient model characterizes a software package named Laser Hardening Simulator (LHS), which makes it possible to predict the extension of the treated area into the mechanical components and thus the hardened depth into the bulk material. The obtained microstructures and the resulting hardness with respect to the laser parameters and to the laser beam path strategy can be determined by considering the quenching and the tempering effects due to the overlapping trajectories. The initial workpiece microstructure is taken into account in the simulation by a digitized photomicrograph of the ferrite-pearlite distribution before the thermal cycle. In order to show the accuracy of the model, experimental trials were conducted on the keyway for spline machined on a hub made of SAE 1043. The domain discretization for the solution of the heat flux problem into the workpiece and for the diffusion of the carbon is carried out by means of a mesh generator strategy implemented into the code

    A new in situ test for the assessment of the rock-burst alarm threshold during tunnelling

    Get PDF
    Rock-burst is one of the most serious risks associated with hard rock tunnelling and mining at high depths. Monitoring of acoustic emissions emitted by the rock-mass during excavation and their interpretation now permits the early assessment of failure events and makes the safe management of the construction works possible. A reliable set-up of the alarm threshold is thus fundamental for the correct implementation of the procedures planned to minimise rock-burst related risk. This paper focuses on a novel in situ test specifically developed to provide an experimental basis for a more accurate assessment of the alarm threshold during tunnelling, representative of the local geomechanical conditions. The test, thanks to the compression induced by two flat jacks at the tunnel side wall, produces an artificial failure process during which acoustic emissions are measured and correlated to the mechanical response of the rock-mass, without the typical limitations of scale that characterised the laboratory experiments. The new methodology, named the Mules method, was successfully tested during the excavation of some stretches of the Brenner Base Tunnel in the Brixner granite, affected by mild spalling episodes. The case-history is fully described in the paper to illustrate the practical application of the proposed approach
    • …
    corecore