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Walk on the Wild Side: Temporarily Unstable Paths 
and Multiplicative Sunspots†

By Guido Ascari, Paolo Bonomolo, and Hedibert F. Lopes*

We propose a generalization of the rational expectations framework 
to allow for temporarily unstable paths. Our approach introduces 
multiplicative sunspot shocks and it yields drifting parameters and 
stochastic volatility. Then, we provide an econometric strategy to 
estimate this generalized model on the data. The methodology allows 
the data to choose between different possible alternatives: determi-
nacy, indeterminacy, and temporary instability. We apply our meth-
odology to US inflation dynamics in the 1970s through the lens of a 
simple New Keynesian model. When temporarily unstable paths are 
allowed, the data unambiguously select them to explain the stagfla-
tion period in the 1970s. (JEL D84, E12, E31, E32, E52)

The vast majority of modern dynamic macroeconomics has relied on models 
of rational expectations (RE) with a unique stable equilibrium, following the 
methodology in Blanchard and Kahn (1980). This somewhat limits the ability of 
the models to analyze unstable behavior in the data, which is an important issue 
in macroeconomics, especially after the Great Financial Crisis. One option is to 
make RE models more flexible to allow temporarily explosive paths. This work 
provides a novel theoretical framework that considers a broader class of solutions 
to allow for temporary instability. Moreover, it provides an empirical strategy to 
take this theoretical framework to the data. Our contribution is therefore both the-
oretical and empirical.
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From a theoretical perspective, our framework generalizes RE solutions to 
accommodate temporarily unstable paths. Macroeconomic models typically feature 
forward-looking behavior, where expectations of future variables affect the dynam-
ics of the models. In this case, the RE assumption is consistent with an infinite 
number of trajectories. Therefore, after Muth’s (1961) seminal contribution, the 
literature faced the problem of how to select an equilibrium out of many possible 
ones.1 Dynamic macro models are usually derived from underlying dynamic opti-
mization problems. Since explosive paths would generally violate the transversality 
conditions associated with these problems, the literature concurred that stability is a 
general consistency requirement to impose on an infinite horizon RE agents model. 
Under some condition (i.e., saddle path dynamics), there is a unique stable RE equi-
librium and thus, the stability criterion is enough to pin down a unique admissible 
RE path. Blanchard and Kahn (1980) formalized this idea and conceptualized the 
solution algorithm on which dynamic macroeconomics is based.

Macroeconomic time series, on the other hand, often display irregular patterns 
that are difficult to describe relying on stable dynamics. Hence, RE solutions have a 
hard time explaining unstable behavior in the data, such as periods of high inflation, 
or boom and bust episodes in asset markets. This makes us reconsider the stability 
criterion as an equilibrium selection device.

There are two main steps in defining our approach. First, we parameterize all 
admissible solutions under RE such that the value of a parameter selects a particular 
solution among the infinite number of admissible ones. Second, we then assume that 
this parameter varies with time according to an exogenous stochastic process. Thus, 
we can build solutions that randomly jump between the admissible RE paths. Time 
variation in the solution allows temporary walks on unstable trajectories, provided 
that the system eventually converges to the stable one. The stability criterion regards 
the long-run convergence of a solution, so it just requires that our time-varying solu-
tion converges to the unique stable one in the limit. Hence, our framework could 
consider a class of solutions where RE paths are temporarily unstable, but stable in 
the long run. As we will discuss, under some conditions, allowing for unstable paths 
requires a minimal relaxation of the RE constraint to comply with the transversality 
conditions. The main insight, however, is that while unstable paths are usually ruled 
out by imposing the stability criterion to select equilibria, the time variation in the 
solution opens up the possibility for temporary instability, not necessarily in contrast 
with RE and stability in the long run.

Furthermore, we show that this time-varying parameter has an appealing eco-
nomic interpretation, because it relates the different infinite RE solutions to the 
way agents form their expectations or, more precisely, it determines the way agents 
weight past data to calculate their RE. The economic interpretation of our proposed 
solution, hence, is that the economy randomly switches among the infinite RE solu-
tions, because agents change the way they are forming their RE.

1 As expressed by Blanchard and Watson (1982, footnote 1, p. 27): “This indeterminacy arises […] in all models 
in which expectations of future variables affect current decisions. It is the subject of much discussion currently 
in macroeconomics, under the label of ‘non-uniqueness.’” Sargent and  Wallace (1973), Brock (1974), Phelps 
and Taylor (1977), Taylor (1977), Blanchard (1979), Blanchard and Kahn (1980), and Flood and Garber (1980) are 
some examples of this compelling debate in the literature that followed Muth’s contribution. See also the discussion 
in Burmeister, Flood, and Garber (1983).
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Finally, our approach is similar in spirit to the sunspot one. A sunspot solution 
features exogenous changes in agents’ expectations that make the economy switch 
between an infinite number of stable RE paths (e.g., Benhabib and Farmer 1999, 
Lubik and Schorfheide 2004). Our “sunspot” is related to expectations too, because 
it is the shock to the exogenous process governing the time-varying parameter. 
There are two main differences. First, our approach also allows temporary switches 
among unstable paths. Second, and more technically, our sunspot shock enters 
nonlinearly in the solution, so it is a multiplicative sunspot, instead of an additive 
sunspot, which has so far been considered by the literature. It follows that the time 
variation also affects the parameters and the variance of the solution. Therefore, 
drifting parameters and stochastic volatility emerge in the reduced form of a struc-
tural model without departing from RE, or without assuming time variation in the 
structural parameters. This may help rationalize the evidence in favor of drifting 
parameters and stochastic volatility as important features in the empirical analysis 
of many macroeconomic time series (see Cogley and Sargent 2005, Primiceri 2005, 
Justiniano and Primiceri 2008).

From an empirical perspective, we develop an econometric strategy suited to our 
framework. Given that our sunspots are multiplicative and imply stochastic volatil-
ity, the likelihood is not Normal and we cannot use Gaussian methods. The model 
parameters and the latent states are estimated using a Bayesian approach based on 
sequential Monte Carlo methods. In particular, we build an econometric strategy 
for parameter learning that combines the approach of Carvalho et al. (2010) and the 
particle filter of Liu and West (2001).2 The econometric strategy allows for the cases 
of determinacy, indeterminacy, or explosiveness, without imposing them a priori. 
The methodology lets the data choose the preferred equilibria among all the pos-
sible ones, and thus to test the empirical validity of temporarily unstable paths. By 
the same token, our approach could be seen as checking the validity of the stability 
criterion as usually imposed on the RE solutions.

To show its potential, we apply our methodology to the US inflation dynamics 
in the postwar sample. In an extremely influential article, Clarida, Galí, and Gertler 
(2000) suggest that the change in the response of monetary policy to inflation 
explains the different inflation behavior between the Great Inflation and the Great 
Moderation. According to a simple New Keynesian model, an insufficient response 
of the interest rate to inflation generates indeterminacy of equilibria (i.e., an infinite 
number of stable RE equilibrium paths) that could explain the aggregate instability 
of the 1970s through shifts in self-fulfilling agents’ beliefs due to sunspot shocks. In 
a seminal contribution about the econometrics of indeterminate RE equilibria, Lubik 
and Schorfheide (2004)—henceforth, LS—estimate a standard three-equations New 
Keynesian model under both determinacy and indeterminacy. Their results provide 
support for the original Clarida, Galí, and Gertler (2000) result in a multivariate 
context (see also other subsequent papers in the literature, e.g., Boivin and Giannoni 

2 Fernández-Villaverde and Rubio-Ramírez (2007) present pioneering work on the estimation of nonlinear or 
non-Gaussian dynamic stochastic general equilibrium (DSGE) models, based on particle filtering within a Markov 
chain Monte Carlo scheme. The use of Sequential Monte Carlo methods is less common in the literature. Exceptions 
are Creal (2007); Chen, Petralia, and Lopes (2010); and Herbst and Schorfheide (2014). Our approach differs some-
what from the latter as explained in Section II.
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2006; Benati and Surico 2009; Mavroeidis 2010; Castelnuovo, Greco, and Raggi 
2014; Castelnuovo and Fanelli 2015; Lubik and Matthes 2016).3

Therefore, the New Keynesian literature appeals to indeterminacy, induced by 
a dovish monetary policy, to explain the apparently explosive behavior of inflation 
during the Great Inflation period, and to a hawkish monetary policy to explain the 
Great Moderation. However, this has the rather paradoxical implication of resorting 
to a stable system to generate instability, as well as to an unstable system to ensure 
stability. From a theoretical perspective, indeterminacy has an infinite number of 
stable trajectories, so it is a stable dynamic system. Indeterminacy, however, opens 
up the possibility of rationalizing an explosive behavior by randomizing among all 
these possible stable trajectories thanks to a sunspot shock. In contrast, a saddle 
path describes an unstable dynamic system, because there are infinite unstable tra-
jectories while only one, which thus has measure zero, is stable. Nonetheless, a 
central bank that does not respect the Taylor principle is certain that the economy is 
on stable dynamics, though subject to self-fulfilling beliefs, while on the contrary 
satisfying the Taylor principle is potentially highly risky, because the probability 
of being on the unique stable path (among an infinite number of unstable ones) is 
practically zero. Macroeconomists generally assume that agents are able to select 
this unique stable solution.

It seems to us that it would be more natural to associate the unstable behavior of 
inflation in the data to an unstable trajectory in the model. We thus apply our frame-
work to ask the following question: is there any evidence that inflation is described 
by temporarily unstable equilibria in the 1970s?

The seminal paper of LS is the natural benchmark against which to compare 
our results, so we use both their econometric model and their data. Our economet-
ric strategy recovers results that are practically identical to those in LS, when we 
impose the stability criterion on the estimation, that is when, as in LS, we just allow 
for determinacy or indeterminacy, ruling out temporary instability. Our main result, 
however, is to provide evidence that the high inflation during the 1970s is better 
explained by temporarily unstable dynamics. The data favor a temporarily unstable 
equilibrium path to explain the Great Inflation period, rather than a randomization 
over stable trajectories as suggested by the indeterminacy literature. Intuitively, to 
explain the rapid increase in inflation in the 1970s, a standard indeterminacy model 
needs to rely on persistent and successive sunspot shocks in the same direction. The 
data assign a low likelihood to such a sequence of shocks and favor a model that 
presents inherent temporarily explosive dynamics.

However, the solution also features stochastic volatility, so that one might con-
jecture that allowing for the possibility of large shocks, rather than for temporarily 
explosive dynamics, is what makes the model outperform the indeterminacy model. 
In Section V, we compare our framework to one with stochastic volatility and a 
unique stable trajectory (i.e., determinacy), as in Justiniano and Primiceri (2008). 

3 Alternative possible explanations for the Great Inflation period put forward in the literature are stochas-
tic volatility of the shocks (e.g., Justiniano and Primiceri 2008; Fernández-Villaverde, Guerrón-Quintana, 
and  Rubio-Ramírez 2010) or escape dynamics (e.g., Sargent 1999; Cho, Williams, and Sargent 2002; Sargent, 
Williams, and Zha 2006; Carboni and Ellison 2009).
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Once more, the estimation favors a model with intrinsic temporarily unstable 
dynamics.

The paper proceeds as follows. Section I explains our approach by means of a 
simple model. Section II explains our econometric strategy. Section III presents 
the application of the approach to the New Keynesian model in LS. Section IV 
discusses the empirical results. Section V presents a comparison with a stochastic 
volatility model and Section VI concludes.

I.  Multiplicative Sunspots and Unstable Paths

We use a simple example to illustrate our approach. We proceed in two steps. 
First, we introduce multiplicative sunspots by allowing agents to switch between 
all possible fundamental solutions under stability. Second, we discuss asymptotic 
stability and we examine the possibility of temporarily unstable paths. Finally, we 
generalize our simple example to a multivariate model.

A. A Simple Example

Consider the following expectational difference equation (as in LS, Section II)

(1)	​ ​y​t​​  = ​  1 _ θ ​ ​E​t​​ ​y​t+1​​ + ​ε​t​​​,

where ​​ε​t​​​ is an i.i.d. shock ​ ∼  N (0, ​σ​ ε​ 2​)​ and ​θ  ∈  Θ  =  [0, 2].​ The term  ​​E​t​​ ​y​t+1​​  
=  E ( ​y​t+1​​ | ​​t​​ )​ is the expected value of ​y​ at ​t + 1​ conditional on the information set 
available at time ​t​.4 A forward-looking equation as (1) implies that the expectation 
regarding the value of ​y​ in the following period determines the equilibrium value of ​
y​ at ​t​. Here lies a fundamental degree of freedom: the way agents form their expec-
tations about future values of ​y​ pins down the equilibrium value today.5 Equation 
(1) naturally has an infinite number of solutions, because one can find an infinite 
number of pairs ​( ​y​t​​, ​E​t​​ ​y​t+1​​)​ that satisfy it.

Muth’s (1961) RE seminal idea restricts the way agents form their expectation to 
be coherent with the economic system, so that the expected forecast error should be 
zero. Defining the forecast error as ​​η​t​​  = ​ y​t​​ − ​E​t−1​​ ​y​t​​​, thus, ​​E​t−1​​(​η​t​​ )  =  0.​ The RE 
requirement, however, is generally not enough to pin down a unique solution. This 
is easy to see by simply rewriting (1) using conditional expectations ​​ξ​t​​  ≡ ​ E​t​​ (​y​t+1​​),​ 
as in Sims (2002),

(2)	​ ​ξ​t​​  =  θ ​ξ​t−1​​ − θ ​ε​t​​ + θ ​η​t​​.​

Any process ​​η​t​​​ such that ​​E​t−1​​(​η​t​​ )  =  0​ defines a different solution to (2), so that the 
solution is characterized up to an arbitrary martingale process.6 Let ​​ζ​t​​​ be a mean 

4 The set ​​​t​​​ contains all the relevant information: all the present and past values of the endogenous and exoge-
nous variables, and the structure of the model with its parameters.

5 See the discussion in Section 2.4 in Woodford (2003), especially pages 127–28.
6 If ​​m​t​​​ is a martingale, then ​Δ ​m​t​​  =  ​m​t​​ − ​m​t−1​​​ is a martingale difference process, and ​​E​t−1​​(Δ ​m​t​​ )  

= ​E​t−1​​(​m​t​​ − ​m​t−1​​) = 0.​ So one could interpret the error of expectations ​​η​t​​​ as a martingale difference process, and 
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zero non-fundamental disturbance, uncorrelated with the fundamental one; then any 
forecast error of the form

(3)	​ ​η​t​​  = ​ (1 + M)​ ​ε​t​​ + ​ζ​t​​​

yields a RE solution (the literature calls ​​ζ​t​​​ a sunspot shock).7
The early literature on RE (see footnote 1) agreed on considering as admissible 

RE solutions only the stable ones. Stability is a general consistency requirement 
to impose on a model of infinite horizons RE agents, because of the set of trans-
versality conditions associated with the agents’ dynamic optimization problems in 
the underlying model. However, whether or not the stability criterion is sufficient 
to select a unique solution depends on the stability properties of the expectational 
difference equation (1), or (2), that is on the value of ​θ​. If ​θ  >  1,​ deviations of ​​
ξ​t​​​ from 0 in (2) explode with time and thus, stability requires ​​ξ​t​​  =  0, ∀ t.​ Hence, 
the stability criterion imposes a restriction on the forecast error (3): ​​η​t​​  = ​ ε​t​​​ and ​
M  = ​ ζ​t​​  =  0, ∀ t​, pinning down the unique RE solution to (2) that does not vio-
late the stability criterion. Blanchard and Kahn (1980) generalized this idea to a 
multivariate RE linear system with backward- and forward-looking variables, and 
conceptualized the well-known solution algorithm that is a cornerstone of dynamic 
macroeconomics.

If ​θ  ≤  1,​ however, the model is indeterminate, because any deviation of ​​ξ​t​​​ from 
0 will not lead ​​ξ​t​​​ to explode over time. All infinite RE solutions of (2) are stable. 
Hence, the stability criterion imposes no restriction on the forecast error (3) and 
thus, it does not solve the problem of selecting a unique equilibrium. The indetermi-
nacy literature then assumes that the economy will choose randomly among these 
infinite stable solutions. This randomization is usually done by adding an exogenous 
non-fundamental sunspot shock, ​​ζ​t​​,​ in (3) for a given value for ​M​ (on which the 
system dynamics put no restrictions).8

B. Indeterminacy: Multiplicative Sunspots and a Generalized 
Time-Varying Solution

This section considers the case of indeterminacy (i.e., ​θ  ≤  1​). Equation (3) sug-
gests another possible source of multiplicity other than the additive sunspot ​​ζ​t​​​: ​M​. 
Note that ​M​ parameterizes all possible fundamental solutions, where the expectation 
error is just a function of the structural shock, so that ​​η​t​​  =  (1 + M ) ​ε​t​​​. Thinking 
along the lines of the Benhabib and Farmer (1999) quotation in footnote 8 suggests 
a different way of introducing sunspot shocks by randomizing over the fundamental 
solutions, i.e., randomizing over ​M​, rather than adding ​​ζ​t​​​. This approach introduces 
a multiplicative sunspot shock, rather than an additive one.

the requirement of a zero expected error simply implies that the solution is characterized up to an arbitrary martin-
gale (see Pesaran 1987).

7 Plugging (3) into (1) yields ​​y​t​​  =  θ ​y​t−1​​ − θ ​ε​t−1​​ + ​(1 + M)​ ​ε​t​​ + ​ζ​t​​,​ which is a way of writing all the possible 
fundamental solutions to (1) parameterized by ​M​ plus the sunspot shock.

8 “Sunspot equilibria can often be constructed by randomizing over multiple equilibria of a general equilibrium 
model, and models with indeterminacy are excellent candidates for the existence of sunspot equilibria since there 
are many equilibria over which to randomize” (Benhabib and Farmer 1999, p. 390).
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To illustrate our approach, we first show that ​M​ parameterizes all fundamental 
RE solutions, and we provide an economic interpretation of ​M​. Second, we intro-
duce time variation in ​M​. Then, we show that the RE condition restricts the type of 
admissible time variation processes, and we analyze the nature of these solutions.

Parameterization.—Consider only fundamental solutions where ​​ζ​t​​  =  0, ∀ t​, in 
(3). Substituting in (2) and iterating backward yields

(4)	​ ​ξ​t​​  =  Mθ​ ∑ 
i=0

​ 
t−1

​​ ​θ​​ i​ ​ε​t−i​​  =  M​ ∑ 
i=1

​ 
t

  ​​ ​θ​​ i​ ​ε​t+1−i​​​​,​

assuming that there exists a whatever distant period 0 where the economy was 
in a steady state: ​​ε​−i​​  = ​ ξ​−i​​  =  0, ∀ i  ≥  0.​ All possible fundamental solutions 
are thus parameterized by ​M  ∈  (−∞, +∞),​ because a particular value of ​M​ 
defines a particular solution. Among the infinite number of solutions, two import-
ant solutions are often considered in the literature: (i) the pure forward-looking 
solution corresponding to ​M  =  0: ​η​t​​  = ​ ε​t​​, ​ξ​ t​ F​  =  0, ​y​ t​ F​  = ​ ε​t​​​; and (ii) the 
pure backward-looking solution, corresponding to ​M  =  −1: ​η​t​​  =  0, ​ξ​ t​ B​  
=  −θ​∑ i=0​ t−1 ​​ ​θ​​ i​ ​ε​t−i​​, ​y​ t​ B​  = ​ ξ​ t−1​ 

B ​   =  −​∑ i=1​ t−1 ​​ ​θ​​ i​ ​ε​t−i​​.​9
Notice that ​M​ has a very natural interpretation: it defines the way agents form 

their expectations. More precisely, it determines if and how agents are going to use 
past observations in forming their expectations. In the simple case of equation (1), 
Muth (1961) shows that the expectation of ​​y​t+1​​​ at time ​t​ can be written as an expo-
nentially weighted average of past observations (assuming ​M  ≠  −1;​ see Appendix 
A for the derivation),10

(5)	​ ​ξ​t​​  ≡ ​ E​t​​ ​y​t+1​​  =  M​ ∑ 
i=1

​ 
t

  ​​ ​​(​  θ _____ 
1 + M ​)​​​ 

i

​ ​y​t+1−i​​​.​

Here, ​​E​t​​ ​y​t+1​​​ is the product of two terms. First, ​M​ measures how much the past 
matters in forming expectations in absolute terms: if ​M  =  0​, then past data do not 
matter. This is the forward-looking solution. Second, the weights ​​[θ/(1 + M )]​​ i​​ tell 
us how much agents relatively weight the past data.

Time Variation.—Following Muth’s RE original formulation, we just argued that ​
M​ can be interpreted as pinning down the infinite number of ways agents could 
combine past data to form their expectations. Our proposed class of solutions simply 
generalizes the standard one, (4), by letting ​M​ be a random variable that can change 
over time, so that

(6)	​ ​ξ​t​​  = ​ M​t​​ θ​ ∑ 
i=0

​ 
t−1

​​ ​θ​​ i​ ​ε​t−i​​  ≡  −​M​t​​ ​ξ​ t​ B​.​

9 It is easy to rewrite (4) as a linear combination of the forward- and backward-looking solutions as: ​​ξ​t​​  =  θM​ε​t​​ + 
Mθ​∑ i=1​ t−1 ​​​θ​​ i​ ​ε​t−i​​  =  θM​(​y​ t​ F​ − ​y​ t​ B​)​​. It follows that one can also write the solution for ​y​ as a weighted average of the 
backward- and the forward-looking solution (see Blanchard 1979).

10 One of the purposes of Muth’s (1961) original paper is to write the expectation at time ​t​ as an exponentially 
weighted average of past observations, because a previous paper (i.e., Muth 1960) demonstrated that this is the 
optimal estimator under some assumptions.
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A key feature of our approach is the particular way we introduce time variation in 
the solution. In each period ​t​, the solution (6) only depends on the current realization 
of ​​M​t​​​ and not on its past values. We impose this restriction on our class of solutions. 
Hence, we are not considering all possible solutions under time variation. For exam-
ple, we do not assume a time-varying ​M​ in (3), i.e., ​​η​t​​  =  (1 + ​M​t​​ ) ​ε​t​​​. This would 
yield a different solution with respect to ours: ​​ξ​t​​  =  θ​∑ i=0​ ∞ ​​ ​θ​​ i​ ​M​t−i​​ ​ε​t−i​​​, where a 
change in ​​M​t​​​ only affects the weight in period ​t​, while in our framework it affects 
all weights in (6). This feature of our proposed solution is important for the way we 
model temporarily unstable paths, as discussed in Section IC.

RE implies ​​E​t−1​​(​η​t​​ )  =  0​. Plugging the proposed solution (6) into the original 
equation (2) and solving for ​​η​t​​​ yields

(7)	​ ​η​t​​  = ​ (1 + ​M​t​​ )​ ​ε​t​​ + ​(​M​t​​ − ​M​t−1​​)​​(​ ∑ 
i=1

​ 
t−1

​​ ​θ​​ i​ ​ε​t−i​​)​,​

which gives the forecast error implied by our proposed solution. For it to be a RE 
solution it must be: ​​E​t−1​​(​η​t​​ )  =  0.​ Thus, ​​M​t​​​ must satisfy the following two condi-
tions: (i) ​​E​t−1​​​(M​t​​ )  = ​ M​t−1​​, ∀ t,​ that is, ​​M​t​​​ must be a martingale process; and (ii)  
​​E​t−1​​[(1 + ​M​t​​  ) ​ε​t​​ ]  =  0,​ that is, ​​M​t​​​ must be uncorrelated with ​​ε​t​​.​

Implications.—Our approach has a number of implications. First, from the point 
of view of the economic interpretation, our approach simply allows for agents to 
change the weights they assign to past shocks or past data in forming their expecta-
tions over time. The solution has the same form as (5) but with ​M​ being time-varying. 
Under indeterminacy, a given ​​M​t​​​ selects one of the infinite stable RE paths, and then 
agents randomly shift from one to another.

Second, our approach allows to recover the minimum state variable solution 
extremely easily, simply by putting ​​M​t​​  =  0​. This remains true in a more general 
model (see Section ID) and hence in the empirical implementation, where the data 
could choose the usual minimum state variable RE solution by supporting the esti-
mate of ​​M​t​​  =  0.​

Third, by introducing a multiplicative sunspot shock, rather than an additive one, 
our solution features time-varying parameters and stochastic volatility. From (1), 
(6), and (7), we can write our solution as

(8)	​ ​y​t​​  = ​ α​t​​ ​y​t−1​​ − ​α​t​​ ​ε​t−1​​ + ​(1 + ​M​t​​)​ ​ε​t​​  if and only if  ​M​t−1​​  ≠  0​,

with ​​α​t​​  =  θ ​M​t​​/​M​t−1​​​.11 The random variation of ​​M​t​​​ causes both a different struc-
tural dependence of ​​ξ​t​​​ (or ​​y​t​​ )​ from its lagged value and a different reaction of the sys-
tem to the current shock. Drifting parameters naturally arise because agents change 
how they form their expectations formation process in each period, thus changing 
the equilibrium trajectory and thus the intrinsic dynamics of the model (i.e., ​​α​t​​​ ). 
Stochastic volatility arises because the reaction to the current fundamental shock 

11  Given the two conditions above (i.e., ​​E​t−1​​​(M​t​​ )  = ​ M​t−1​​​ and ​​E​t−1​​[(1 + ​M​t​​ ) ​ε​t​​ ]  =  0)​, it follows that (8) sat-
isfies the original equation (1). Moreover, it can also be written as a dynamic formulation of Blanchard (1979): 
​​y​t​​  =  −​M​t​​ ​y​ t​ B​ + (1 + ​M​t​​ ) ​y​ t​ F​​. See Appendix A.
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depends on the current realization of ​​M​t​​​ through the term ​(1 + ​M​t​​ ) ​ε​t​​​, possibly 
amplifying the effects of ​​ε​t​​​ on the economy. These two important properties of our 
solution are evident in the expression for the forecast error (7) which is the sum of 
two terms. The first term is the interaction term between the innovation in ​​M​t​​​ and the 
structural shock. The second term arises from the change in ​​M​t​​​ which leads agents 
to respond differently to past shocks, putting the system on a different RE path. 
Our approach has the potential for an economic explanation of drifting parameters 
and stochastic volatility, without departing from the RE hypothesis. The empiri-
cal research (Cogley and Sargent 2005, Primiceri 2005, Justiniano and Primiceri 
2008, and related literature) considers these as important features in explaining the 
dynamics of macroeconomic variables.

C. Modeling Temporarily Unstable Paths

Consider now the case where ​θ  >  1​: the solution (6) is unstable. If explosive-
ness is allowed in the model, as could be the case for an asset pricing model or a 
model with only nominal variables, then the only restriction comes from the RE 
requirement that constrains ​​M​t​​​ to be: (i) a martingale; and (ii) uncorrelated with the 
fundamental shock ​​ε​t​​​.

In the more general case where the model needs to satisfy the stability crite-
rion, the only stable solution when ​M​ is a constant is the forward-looking solution. 
The stability criterion, however, relates to the asymptotic behavior of the solution. 
Hence, it does not rule out “bubbly,” but temporary, trajectories, featuring unstable 
dynamics that are temporarily explosive, but stable in the long run. In this section, 
we show how our approach could consider this broader class of solutions, because 
of the flexibility provided by the key assumption of time variation in ​​M​t​​​. To allow 
for equilibrium paths that are temporarily unstable, but exhibit the same asymptotic 
behavior as the one selected by the stability criterion, we need a minimal relaxation 
of the requirement of RE. The great advantage, however, is that our approach then 
provides an econometric procedure to assess the empirical relevance of these tem-
porarily unstable paths in the data.

On the one hand, the stability criterion usually induced by transversality condi-
tions in optimization problems imposes a restriction on the current expectation of the 
asymptotic behavior of the solution, requiring that ​​lim​i→∞​​ ​E​t​​(​y​t+i​​) =  0​. On the other 
hand, the RE requirement restricts the admissible time-varying processes for ​​M​t​​​ to 
be a martingale. The martingale requirement implies that if ​θ >  1​ and ​​M​t​​ ≠  0​, the 
economy is expected to remain forever on the unstable path selected by ​​M​t​​​, so that the 
transversality condition would be violated.12 To allow for temporarily unstable paths 
in this case, we need to relax the martingale assumption and thus, the RE assumption. 
This deviation, however, could be minimal without practical implications when the 

12 Note that this would be true even if the instability is only temporary, that is even if the process for ​​M​t​​​ 
will eventually converge to 0 with probability 1, as for example in the case of asymptotically equal to a station-
ary processes suggested by Gourieroux, Laffont, and Monfort (1982). In this case, ​​lim​i→∞​​ ​M​t+i​​  =  0​ such that 
​​lim​i→∞​​ ​ξ​t+i​​  =  ​lim​i→∞​​ ​E​t+i​​​ ( y​t+1+i​​)  =  0.​ However, this does not imply: ​​lim​i→∞​​ ​E​t​​​ ( y​t+i​​)  =  0,​ and the transversal-
ity condition will be violated, because even if the economy is actually converging with probability 1, the martingale 
assumption requires that agents expect, conditionally on ​​M​t​​​, the economy to explode.
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model is taken to the data. In our empirical analysis in Section IV, we will assume 
that ​​M​t​​​ follows

(9)	​ ​M​t​​  = ​ N​t​​ ​1​​{∥​y​ t−1​​ B  ​∥<​U 
–
 ​}​​​​,

where ​​N​t​​​ is a martingale and ​​1​{ ⋅ }​​​ is the indicator function. The latter is equal to 1 
if the norm of the backward-looking solution at time ​t − 1​ is less than a certain 
scalar ​​U 

–
 ​  <  ∞​, and is equal to 0 otherwise. Since ​θ  >  1​, there exists a random 

date ​​T 
–
​​ in which ​∥ ​y​ ​T 

–
​−1​ B ​  ∥​ becomes greater than ​​U 

–
 ​​ and the indicator function will 

be equal to 0 for all ​t  > ​ T 
–
​​. After this date, the stochastic process ​​M​t​​​ will also be 

equal to 0, and the dynamics will coincide with the unique stable solution (i.e., 
the forward-looking solution). The indicator function in (9) is a random variable 
where the realization is known at time ​t​, since it depends on the past value of 
the backward-looking solution. Then, in general (i.e., except in period ​​T 

–
​​ ) ​​E​t​​ ​M​t+1​​ 

= ​ M​t​​​, which implies that the expected value of the forecast error is equal to 0. 
However, ​​lim​i→∞​​ ​E​t​​ ​M​t+i​​  =  0​, so that the transversality condition also holds. The 
presence of the indicator function is a simple expedient to capture the idea that 
the transversality condition is an asymptotic one (i.e., ​​T 

–
​​ is really large). In other 

words, the probability that the RE requirement may be violated in any near future 
is zero. However, it will be violated in a finite future, whatever far, depending 
on how large is ​​U 

–
 ​​. In order to allow for temporarily unstable paths, we implic-

itly assume that this possibility in the very distant future is disregarded by the 
agents.13 In the practical implementation of the econometric procedure, one can 
choose a ​​U 

–
 ​​ so large that the martingale condition is satisfied by any estimate or 

simulated impulse response paths.

Implications.—There are three main differences between our approach and the 
standard sunspot literature. First, in the standard additive sunspot approach, ​M​ is 
constant and thus it can be different from 0 only if ​θ  ≤  1​. Hence, sunspots are 
allowed only if ​θ  ≤  1​, i.e., under indeterminacy. Our approach, instead, allows 
temporarily unstable paths, even if ​θ  >  1,​ because ​​M​t​​​ varies with time, and sta-
bility can be imposed asymptotically on the process for ​​M​t​​​. Our proposed solution 
makes it possible to consider an infinite number of possible asymptotically stable 
solutions: the stability criterion is no longer enough to select a unique equilibrium 
even if ​θ  >  1​. Hence, the model is not “determinate”: indeterminacy, in the sense 
of an infinite number of admissible paths, is the natural case.

Second, as already stressed, multiplicative sunspots imply stochastic volatility 
and drifting parameters within a RE framework.

Last but not least, we provide a way of taking our framework to the data. If ​M​ is 
time-varying, theoretically it is harder to rule out equilibria that are only temporarily 
unstable. We simply acknowledge that the empirical analysis should allow for the 
possibility of temporary “walks along unstable paths.” Hence, we are not taking a 
stand a priori on the possible equilibria in our estimation strategy, by allowing for all 

13 As expressed by Blanchard and Watson (1982,  p. 8), the argument that rules out this possibility “may be 
pushing rationality too far. […] the probability […] may be so small, and the future time so far as to be considered 
nearly rationally irrelevant for market participants.”
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possible cases: determinacy (​θ  >  1; ​M​t​​  =  0​), indeterminacy (​θ  ≤  1; ​M​t​​  ≠  0​), 
and temporary instability (​θ  >  1; ​M​t​​  ≠  0​). We then propose a methodology to let 
the data choose the preferred equilibria by estimating the latent process for ​​M​t​​​. At 
the very least, our approach could be seen as a test of RE, or of the transversality 
conditions, as normally applied. This is what we turn to next, explaining our pro-
posed methodology in a more general context.

D. Implementation: The General Solution

To implement our proposed solution in the simple case, recursively define the 
solution using the backward-looking solution ​​ξ​ t​ B​  =  −θ​∑ i=0​ t−1 ​​ ​θ​​ i​ ​ε​t−i​​​ and (6) to write

(10)	​ ​ξ​ t​ B​  =  −θ​ ∑ 
i=0

​ 
t−1

​​​θ​​ i​ ​ε​t−i​​  =  −θ ​ε​t​​ + θ ​ξ​ t−1​​ B  ​​,

(11)	​ ​ξ​t​​  = ​ M​t​​ ​ξ​ t​ B​,​

plus a given stochastic process for ​​M​t​​.​ The solution for the expectation error in (7) 
is ​​η​t​​  =  (1 + ​M​t−1​​) ​ε​t​​ − (​M​t​​ − ​M​t−1​​) ​ξ​ t​ B​/θ.​

The multivariate case is a relatively straightforward extension of the simple case. 
The online Appendix describes it in detail, following similar steps as above, involv-
ing: (i) parameterizing the system using ​M​ (now a matrix); (ii) introducing time 
variation in ​M;​ and (iii) imposing stability. As in LS, we follow the approach of 
Sims (2002) and we write a general linear RE system as

(12)	​ ​y​t​​  = ​ Γ​ 1​ ∗​ ​y​t−1​​ + ​Ψ​​ ∗​ ​ε​t​​ + ​Π​​ ∗​ ​η​t​​​,

where ​​y​t​​​ is the vector of the ​n​ endogenous variables (including the expectations as in 
(2)), ​​ε​t​​​ is the vector of the ​j​ exogenous fundamental shocks, and ​​η​t​​​ is the vector of 
the ​k  ≤  n​ RE forecast errors. As usual, we need to partition the system. Use Jordan 
decomposition to diagonalize ​​Γ​ 1​ ∗​  =  JΛ ​J​​ −1​​ and define the vector of transformed 
variables ​​​y ̃ ​​t​​  = ​ J​​ −1​ ​y​t​​.​ We depart from Sims (2002) and LS by partitioning the sys-
tem according to the number of forward-looking variables/expectation errors, rather 
than the number of explosive eigenvalues. Then,

(13)	​ ​​y ̃ ​​t​​  = ​

⎡

 ⎢ 
⎣
​ 

​Λ​1​​

​ 

0

​   ​(​(n − k)​ × ​(n − k)​)​​  ​(​(n − k)​ × k)​​   0​  ​Λ​2​​​   
​(k × ​(n − k)​)​

​ 
​(k × k)​

 ​

⎤

 ⎥ 
⎦
​ ​​y ̃ ​​t−1​​​​

	 +  ​

⎡

 ⎢ 
⎣
​ 

​J​μ1​​

​ ​(n − k)​ × n​ ​J​μ2​​​ 
​(k × n)​

 ​

⎤

 ⎥ 
⎦
​​[​Ψ​​ ∗​ ​ε​t​​ + ​Π​​ ∗​ ​η​t​​ ]​.​

Let ​m​ be the number of explosive eigenvalues (i.e., such that ​​λ​i​​  ≥  1)​. As usual, we 
assume that the number of explosive eigenvalues is smaller or equal to the number 
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of forecast errors, i.e., ​m  ≤  k​. This case is the usual one in the literature where one 
can have either determinacy (​m  =  k​) or indeterminacy (​m  <  k​).14 This means 
that in our partition, the first (​n − k)​ rows only contain stable eigenvalues, while 
the last ​k​ rows contain both ​(k − m)​ stable and ​m​ unstable eigenvalues. Hence, we 
do not need to impose any stability condition on the first block of the system (13). 
However, we will do so on the second block of the system (13),

(14)	​ ​​y ̃ ​​k,t​​  = ​ Λ​2​​ ​​y ̃ ​​k,t−1​​​​ + ​J​μ2​​​[​Ψ​​ ∗​ ​ε​t​​ + ​Π​​ ∗​ ​η​t​​]​​,

where ​​​y ̃ ​​k,t​​​ denotes a vector of dimension ​k​.
Define ​​M​t​​​ as a ​(k × k)​ diagonal matrix whose elements on the principal diagonal 

are changing over time. Generalizing (10) and (11), the online Appendix shows that 
the solution to the system of disconnected difference equations (14) can be written 
recursively using the backward-looking variable ​​​y ̃ ​​ k,t​ B ​​ as

(15)	​ ​​y ̃ ​​ k,t​ B ​  = ​ Λ​2​​ ​​y ̃ ​​ k,t−1​​ B  ​ + ​J​μ2​​ ​Ψ​​ ∗​ ​ε​t​​​,

(16)	​ ​​y ̃ ​​k,t​​  =  −​M​t​​ ​​y ̃ ​​ k,t​ B ​  =  −​M​t​​​(​Λ​2​​ ​​y ̃ ​​ k,t−1​​ B  ​ + ​J​μ2​​ ​Ψ​​ ∗​ ​ε​t​​)​​,

and the expectation error is equal to

(17)	​ ​η​t​​  = ​​ (​J​μ2​​ ​Π​​ ∗​)​​​ −1​​[−​(I + ​M​t−1​​)​ ​J​μ2​​ ​Ψ​​ ∗​ ​ε​t​​ − ​(​M​t​​ − ​M​t−1​​)​ ​​y ̃ ​​ k,t​ B ​]​,​

assuming that the ​(k × k)​ matrix ​​𝐉​μ2​​ ​𝚷​​ ∗​​ is invertible.
Note that if all the elements ​​M​i,t​​​ on the principal diagonal of ​​M​t​​​ are equal to 0 

for all ​t​, then ​​​y ̃ ​​k,t​​  =  0​, so that we recover the forward-looking solution. As in the 
simple model, we impose stability by only allowing particular processes for ​​M​i,t​​​. 
In general, if we have ​k​ non-predetermined variables, the cardinality of the set of 
solutions is infinite to the power of ​k​. However, the stability requirement imposes a 
restriction on the ​​M​i,t​​​ that correspond to eigenvalues of the system that are outside 
the unit circle. As in the simple example, we will restrict the processes for these ​​
M​i,t​​​ to randomly converge to the stationary forward-looking solution in finite time, 
such that ​​M​i,t​​  =  0, ∀ t  > ​ T 

–
​,​ where ​​T 

–
​​ is a random variable. The stability condition, 

instead, does not impose any restrictions on the stochastic processes governing the ​
(k − m)​ elements of ​​M​t​​​ corresponding to stable eigenvalues.

The online Appendix shows that the solution for the original variables is

(18)	​ ​[ ​ 
​y​t​​​ ​y​ t​ B​

​]​  = ​ [​
J​  0​ 
0
​ 

J
​]​ ​G​ t​ ∗​​[​​J​​ −1​​  0​ 

0
​ 

​J​​ −1​
​]​​[ ​ 

​y​t−1​​​ ​y​ t−1​​ B  ​​]​ + ​[​
J​  0​ 
0
​ 

J
 ​]​ ​H​ t​ ∗​ ​ε​t​​,​

where

(19)	​ ​G​ t​ ∗​  = ​

⎡

 ⎢ 
⎣

​

​Λ​1​​

​ 

0

​ 

0

​ 

−​B​t,t−1​​​​​

​  0​  0​  0​  −​M​t​​ ​Λ​2​​​  
0
​ 

0
​ 

​Λ​1​​
​ 

0
​  

0

​ 

0

​ 

0

​ 

​Λ​2​​

 ​

⎤

 ⎥ 
⎦

​ , ​ H​ t​ ∗​  = ​

⎡

 ⎢ 
⎣

​ 

​A​t​​

​ 
−​M​t​​ ​J​μ2​​ ​Ψ​​ ∗​

​ ​J​μ1​​ ​Ψ​​ ∗​​ 

​J​μ2​​ ​Ψ​​ ∗​

 ​

⎤

 ⎥ 
⎦

​ ,​

14 We rule out the case ​m  >  k,​ where the number of unstable eigenvalues, ​m,​ is bigger than the number of 
forward-looking variables, ​k​. In this case, a stable solution does not exist.
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and ​​A​t​​​ is an ​(n − k) × l​  matrix and ​​B​t,t−1​​​​​​  is an ​(n − k) × k​  matrix equal to, 
respectively,

(20)	​ ​A​t​​  = ​ J​μ1​​​[​Ψ​​ ∗​ − ​Π​​ ∗​​​(​J​μ2​​ ​Π​​ ∗​)​​​ −1​​(I + ​M​t​​)​ ​J​μ2​​ ​Ψ​​ ∗​]​,​

(21)	​ ​B​t,t−1​​​​  = ​ J​μ1​​ ​Π​​ ∗​​​(​J​μ2​​ ​Π​​ ∗​)​​​ −1​​(​M​t​​ − ​M​t−1​​)​ ​Λ​2​​.​

Note that ​​M​t​​  =  0, ∀ t​, implies ​​A​t​​  = ​ J​μ1​​[​Ψ​​ ∗​ − ​Π​​ ∗​ (​​J​μ2​​ ​Π​​ ∗​)​​ −1​ ​J​μ2​​ ​Ψ​​ ∗​ ]​ and ​​B​t,t−1​​​​  
= ​ J​μ1​​ ​Π​​ ∗​ ​(​J​μ2​​ ​Π​​ ∗​)​​ −1​​​(​M​t​​ − ​M​t−1​​)​Λ​2​​  =  0,​ so that the system no longer depends 
on ​​y​ k,t​ B ​​, and the solution coincides with

(22)	​ ​y​t​​  =  J ​

⎡

 ⎢ 
⎣

​ 

​Λ​1​​

​ 

0

​   
​(​(n − k)​ × ​(n − k)​)​

​ 
​(​(n − k)​ × k)​

​   
0
​ 

0
​   

​(k × ​(n − k)​)​
​ 

​(k × k)​

 ​

⎤

 ⎥ 
⎦

​ ​J​​ −1​ ​y​t−1​​

	 + J ​

⎡

 ⎢ 
⎣

​

​J​μ1​​​[​Ψ​​ ∗​ − ​Π​​ ∗​ ​​(​J​μ2​​ ​Π​​ ∗​)​​​ −1​ ​J​μ2​​ ​Ψ​​ ∗​]​

​  ​(n − k)​ × l​ 
0
​ 

​(k × l)​

 ​

⎤

 ⎥ 
⎦

​ ​ε​t​​,​

which is the usual Blanchard-Kahn solution in case of a determinate system or the 
minimum state variable solution for an indeterminate system.

II.  Econometric Strategy

In this section, we take a Bayesian approach to make inference regarding the 
parameters and the latent processes of a DSGE model when considering the class 
of solutions (18). The presence of stochastic volatility in the reduced form of 
the model, related to the time-varying characteristic of the latent state ​​M​t​​​, leads 
to a non-Gaussian, analytically intractable likelihood function. In such situa-
tions, when estimating nonlinear or non-Gaussian DSGE models, a well-known 
approach proposed by Fernández-Villaverde and  Rubio-Ramírez (2007) is per-
formed in two steps. In the first step, the integrated likelihood of the parameters is 
approximated through the implementation of a particle filter. Then, in the second 
step, one uses the approximated likelihood within a Markov Chain Monte Carlo 
(MCMC) scheme that samples from the posterior distribution of the parameters.15 
We depart from this tradition and suggest the use of an efficient particle filter-
ing strategy directly to approximate the joint posterior distribution of both the 
parameters and the latent state variables such as ​​M​t​​​. In particular, we follow Chen, 
Petralia, and Lopes (2010), who introduced a particle strategy for DSGE models that 

15 Recent papers in which this approach is implemented are Carvalho et al. (2017) and Gust et al. (2017).
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combines the Sequential Monte Carlo (SMC) algorithms of Liu and West (2001) 
and Carvalho et al. (2010).

In what follows, we first show how to write the solution (18) in a convenient state 
space form, and then we illustrate and discuss the main aspects of our particle filter-
ing strategy, referring to the online Appendix for an in-depth description. Finally, we 
motivate our choice by comparing it with possible alternatives.

A. The State Space Form

In the class of solutions (18), we need to keep track of the pure backward-looking 
solution ​​y​ t​ B​​. This vector contains both endogenous and exogenous variables, and 
since the latter do not depend on the agent’s expectations, their evolution will be the 
same as the analogous variables in ​​y​t​​​. When estimating the model, it is convenient 
to rewrite the solution (18) so that the exogenous variables appear only once, that is, 
using a compact notation,

(23)	​ ​l​t​​  = ​ G​t​​ ​l​t−1​​ + ​H​t​​ ​ε​t​​​

with

	​ ​l​t​​  = ​ [ ​ 
​y​t​​​ ​y​ t​ B,E​​ ]​,​

where ​​y​ t​ B,E​​ is a vector with the endogenous variables in the pure backward-looking 
solution. The matrices ​​G​t​​​ and ​​H​t​​​ are appropriate transformations of the matrices in 
(18).

At each time ​t​, we observe a vector of data, which will be simply denoted by ​​D​t​​​. 
Then, the solution of model (12) has the following state space representation:

(24)	​​ {​​ 
​D​t​​  =  c + ​Fl​t​​ + ​v​t​​​ 

​v​t​​  ∼  N ​(0, ​Σ​v​​)​​    
​l​t​​  = ​ G​t​​ ​l​t−1​​ + ​H​t​​ ​ε​t​​

​ 
​ε​t​​  ∼  N ​(0, ​Σ​ε​​)​

​​​​,

where ​c​ is a vector of constants, ​F​ is a matrix with appropriate dimensions, and ​​v​t​​​ is 
a vector of measurement errors.

B. The Particle Filter

The parameters in ​c​, ​F​, ​​G​t​​​, ​​H​t​​​, ​​Σ​v​​​, ​​Σ​ε​​​ are collected in the vector ​θ​. As already 
mentioned, let ​​D​t​​​ be the vector of observed data at time ​t​, and ​​D​m:n​​​ denote the set of 
all observations from ​t  =  m​ to ​t  =  n​ for ​m  ≤  n​. We perform posterior Bayesian 
inference via Monte Carlo methods to approximate the joint posterior distribution 
of parameters and latent states of the model by a sufficiently large number of sample 
draws, or particles. More precisely, our econometric strategy is based on Bayesian 
sequential learning via particle filtering: at time ​t − 1​, we start with a particle 

set ​​​{​​(​l​t−1​​, ​M​t−1​​, θ)​​​ ​(i)​​}​​ i=1​ 
N
 ​ ​ and associated particle weights ​​​{​w​ t−1​​  ​(i)​ ​}​​ i=1​ 

N
 ​ ​ that summa-

rize, via Monte Carlo, the full joint posterior of states ​​(​l​t−1​​, ​M​t−1​​)​​ and parameters 
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​θ​, i.e., ​p​(​l​t−1​​, ​M​t−1​​, θ | ​D​1:t−1​​​​)​​. The goal is to arrive at the end of time ​t​ with a similar 

set of particles ​​​{​​(​l​t​​, ​M​t​​, θ)​​​ ​(i)​​}​​ i=1​ 
N
  ​​ and weights ​​​{​w​ t​  ​(i)​​}​​ i=1​ 

N
 ​ ​ representing the joint poste-

rior distribution

(25)	​ p​(​l​t​​, ​M​t​​, θ | ​D​1:t​​)​.​

Loosely speaking, a particle filter is a sampling importance resampling (SIR) 
scheme implemented iteratively over time: since it is not possible to extract the 
particles directly from the posterior distribution, we draw from another distribution, 
say ​q (​l​t​​, ​M​t​​, θ | ​D​1:t​​ )​, commonly referred to as an importance distribution, and we 
approximate the target density (25), assigning appropriate weights to each particle. 
The reweighting of a particle from the importance distribution gives that particle 
the “status” of an actual draw from the posterior distribution.16 If the support of the 
target ​p( ⋅ )​ is included in the support of proposal ​q( ⋅ )​, then for each particle ​i​, the 
appropriate weight is given by

(26)	​ ​w​ t​  ​(i)​​  = ​ 
p​(​l​ t​  ​(i)​​, ​M​ t​  ​(i)​​, ​θ​​ ​(i)​​ | ​D​1:t​​)​  _______________  
q​(​l​ t​  ​(i)​​, ​M​ t​  ​(i)​​, ​θ​​ ​(i)​​ | ​D​1:t​​)​

 ​ .​

The essence of a particle filter ultimately depends on the design of the importance 
distribution ​q (​l​t​​, ​M​t​​, θ | ​D​1:t​​)​. Our choice is tailored on the peculiar aspects related to 
the set of solutions we analyze through equation (18).

The most important peculiarity is that, conditionally on ​​M​t​​​, the state space form 
(24) is linear and Gaussian, which implies that, given a set of particles for ​​M​t​​​, both 
the predictive likelihood and the full conditional distribution of the other latent states 
are analytically available through the standard Kalman filter recursion. This prac-
tice increases the efficiency of our particle filter through analytical integration, as it 
follows from the Rao-Blackwell theorem (see Lopes et al. 2011 for further details).

The posterior distribution of the parameters can be updated sequentially combin-
ing two different methodologies for parameter learning. In particular, it is useful to 
divide the parameters into two sets: one with the variances and covariances of the 
exogenous disturbances, and one with all the other structural parameters. For the 
variances and covariances, we assume that the prior distributions are Inverse Gamma 
or Inverse Wishart. Then, we are able to characterize the posterior distribution ana-
lytically (up to a normalizing constant), using sufficient statistics computed as func-
tions of the data and the latent processes of the model. This is the idea of the Particle 
Learning approach introduced by Carvalho et al. (2010). The posterior distribution 
of the other parameters is, in general, not available analytically. It can be approxi-
mated using mixtures of Gaussian densities, as in the flexible and general particle 
filtering with parameter learning algorithm proposed by Liu and West (2001).17

16 See, for instance, Cappe, Godsill, and  Moulines (2007) and Lopes and  Tsay (2011) (and the references 
therein) for a review of particle methods for Bayesian inference.

17 This methodology builds on the resample propagation scheme of the Auxiliary Particle Filter proposed by 
Pitt and Shephard (1999).
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The use of SMC methods to approximate the posterior distribution of the param-
eters of a DSGE model is not very common in the literature: Creal (2007); Chen, 
Petralia, and Lopes (2010); and Herbst and Schorfheide (2014) are exceptions to the 
usual practice based on MCMC. Nevertheless, the particle filtering approach is the 
most suited to our framework, given the peculiarity of the class of solutions we are 
considering. First of all, a time-varying ​​M​t​​​ makes the model non-Gaussian, and it is 
well known that in this context, MCMC methods may have serious limitations due 
to the high time-dependence of the latent variables. In particular, the convergence 
of the Markov chain generated through MCMC to the posterior distribution can be 
very slow and difficult to achieve.

Moreover, within the class of solutions we analyze, the case corresponding to ​​
M​t​​  =  0​ implies a completely different reduced form compared to all the other 
cases: as shown in the previous section, this is the minimum state variable solution, 
characterized by a simpler lag structure. The shape of the likelihood function, con-
ditional on ​​M​t​​  =  0​, may be substantially different from that under ​​M​t​​  ≠  0​, mak-
ing the MCMC-based inference more complicated: the Markov chain accurately 
explores the parameter space around the mode of the distribution but, in practice, it 
is less able to approximate the posterior when the latter is not well-shaped, or has 
multiple modes. This is not a mere technicality, because ​​M​t​​  =  0​ is a very import-
ant case: it is the unique stable solution when the Blanchard-Kahn conditions are 
satisfied, and it characterizes the dynamics implied by the model under the case 
that the literature labels determinacy. In order to deal with this issue, LS run the 
posterior sampler over determinacy and indeterminacy separately. Our suggestion 
is to estimate the model considering all the relevant cases simultaneously using 
particle filters instead of MCMC. In general, SMC methods are more appropriate 
when the posterior distribution displays irregular patterns. We show the ability of 
our econometric strategy to deal with this specific problem in the empirical applica-
tion described in the next section.

Another advantage of particle filters is computational: the use of multi-core pro-
cessors makes it possible to increase the speed and the accuracy of the estimation 
through parallel computing. The gains one can achieve are substantial for SMC, 
while they are limited for MCMC even if parallelization is implemented in an effi-
cient way, as in the prefetching approach described by Strid (2010).18

There are two approaches in the SMC literature to estimate the “static” param-
eters of a model. One uses all data available in the sample in each iteration of the 
SMC to approximate a sequence of distributions, starting from a very simple case 
(i.e., the prior distribution), and ending with the posterior distribution of interest. We 
follow a second alternative: we construct particle approximations to the posterior 
distribution augmenting, at each iteration, the sample data we use. In this case, each 
step of the SMC corresponds to an additional observation, as if new data become 
available sequentially. We prefer this second technique because it gives us the possi-
bility to study how the inference on the unknowns evolves over time. In the empir-
ical application below, we show how this “learning” perspective unveils additional 
information on the role of sunspots and temporarily unstable paths in describing 

18 For a discussion, see also Herbst and Schorfheide (2014).
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the data. Moreover, this approach makes it simpler for us to deal with the filtering 
problem related to the estimation of ​​M​t​​​.

III.  Multiplicative Sunspots and Unstable Paths at Work: 
The Great Inflation and the New Keynesian Model

We apply our new methodology to inflation dynamics. We employ the same New 
Keynesian model (and notation) as in the seminal paper by LS, which is the natural 
paper to compare the results of our methodology:

(27)	​ ​x​t​​  = ​ E​t​​​(​x​t+1​​)​ − τ​(​R​t​​ − ​E​t​​​(​π​t+1​​)​)​ + ​g​t​​,​

(28)	​ ​π​t​​  =  β ​E​t​​​(​π​t+1​​)​ + κ​(​x​t​​ − ​z​t​​)​,​

(29)	​ ​R​t​​  = ​ ρ​R​​ ​R​t−1​​ + ​(1 − ​ρ​R​​)​​(​ψ​1​​ ​π​t​​ + ​ψ​2​​​(​x​t​​ − ​z​t​​)​)​ + ​ε​R,t​​,​

where ​x​ is output, ​π​ is inflation, and ​R​ is the nominal interest rate. Values of ​π​ 
and ​R​ are expressed in deviation from the steady state, and ​x​ in deviation from the 
steady-state trend path. The model admits three shocks: (i) a demand shock, ​g,​ that 
can be interpreted as a time-varying government spending shock or a preference 
shock; (ii) a shock to the marginal costs of production, ​z​; and (iii) a monetary policy 
shock, ​​ε​R​​​. The first equation is the New Keynesian IS curve (NKIS), which relates 
the dynamics of the output ​​x​t​​​ to the real interest rate. The New Keynesian Phillips 
curve (NKPC), (28), describes the dynamics of the inflation rate ​​π​t​​​. A standard 
Taylor rule, (29), where the central bank reacts to the deviations of inflation and the 
output gap from their targets plus inertia, closes the model. As in LS, we assume 
autocorrelation in the shocks in the NKIS and in the NKPC,

(30)	 ​​g​t​​  = ​ ρ​g​​ ​g​t−1​​ + ​ε​g,t​​ ;  ​  z​t​​  = ​ ρ​z​​ ​z​t−1​​ + ​ε​z,t​​,​

and a nonzero correlation, ​​ρ​gz​​,​ between ​​ε​g,t​​​ and ​​ε​z,t​​​. Variables ​​σ​g​​, ​σ​z​​​, and ​​σ​R​​​, denote 
the standard deviations of the zero-mean innovations ​​ε​g,t​​, ​ε​z,t​​​, and ​​ε​R,t​​​, respectively.

The parameters of the model are also standard: ​β  ∈  (0, 1)​ is the households’ 
subjective discount factor, ​τ​  is the elasticity of intertemporal substitution in con-
sumption, ​κ​ is the slope of the NKPC, which ultimately depends on the degree of 
nominal price stickiness and the labor supply elasticity, ​​ρ​R​​​ is the inertial parameter 
in the Taylor rule while ​​ψ​1​​​ and ​​ψ​2​​​ measure the response of the nominal interest rate 
to inflation and output, respectively.

The model has five variables: three predetermined (​​R​t​​, ​g​t​​​, and ​​z​t​​)​ and two non-pre-
determined (​​x​t​​, ​π​t​​​). Then, the matrix ​​M​t​​​ has dimension 2. We also know that among 
the five eigenvalues of the dynamic system, three of them are inside the unit circle 
(because ​​ρ​g​​​, ​​ρ​z​​​, and ​​ρ​R​​​ are less than 1 in absolute value), and one is always outside 
the unit circle (for sensible values of the parameters, see Bullard and Mitra 2002). 
The remaining eigenvalue can be inside or outside the unit circle, depending on the 
following condition (i.e., the Taylor principle):

(31)	​ ​ψ​1​​  >  1 − ​ 1 − β _ κ  ​ ​ψ​2​​.​
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The literature usually imposes the stability criterion to select valid equilibria and 
thus, it distinguishes two possible cases. If (31) holds, the model has two eigenval-
ues greater than 1 in absolute value. This is the determinacy case: there is a unique 
stable RE equilibrium, i.e., the forward-looking one. Otherwise, if (31) does not 
hold, there will be an infinite number of stable RE equilibria and this case is nor-
mally labeled indeterminacy.

However, note that in both cases, there is an infinite number of unstable RE equi-
libria associated with the unstable eigenvalue, which the literature usually does not 
consider because of the stability criterion. Our framework, instead, imposes stability 
in the long run, but it admits temporary walks on these unstable paths by allowing 
for time variation in the way agents are setting their expectations. We can test the 
validity of our framework in a particular sample comparing the relative performance 
of the New Keynesian model, under different hypotheses on the set of admissible 
solutions. Hence, we distinguish two cases: one in which we impose the stability 
criterion, so that the economy needs to be on a stable trajectory at any point in time; 
and one in which we also consider temporarily unstable solutions. The aim is to let 
the data speak about their preferred assumption.

Model ​​M​S​​​ (Stable Solutions).—We exclude unstable solutions. We label this case 
model ​​M​S​​​, and the matrix ​​M​t​​​ is

(32)	​ ​M​t​​  = ​ [​​M​1,t​​​  0​ 
0
​ 

0
​]​​,

(33)  ​  ​M​1,t​​  = ​
{

​0​ 
if  ​ψ​1​​  >  1 − ​ 1 − β _ κ  ​ ​ψ​2​​​     

​M​1,t−1​​​​ + ​ζ​t​​, ​ ζ​t​​  ∼  N​(0, ​σ​ ζ​ 2​)​
​ 

otherwise.
 ​​​

The south east element in ​​M​t​​​ is imposed to be zero because there is always one 
explosive eigenvalue. For the first element, ​​M​1,t​​​, instead, we distinguish the two 
cases usually considered in the literature. In the case of determinacy, when the 
Taylor principle is satisfied, the corresponding eigenvalue is outside the unit cir-
cle and we need to select the forward-looking solution (​​M​1,t​​  =  0​) for all ​t​. In the 
case of indeterminacy, when the Taylor principle is not satisfied, there is an infinite 
number of stable solutions and the stability condition poses no restrictions on ​​M​1,t​​​. 
Element ​​M​1,t​​​ needs to be a martingale, so we will assume that it follows a random 
walk driven by a sunspot shock.

Model ​​M​U​​​ (Temporarily Unstable Solutions).—In this case, we define the matrix ​​
M​t​​​ as

(34)	​ ​M​t​​  = ​ M​1,t​​ I​,

where ​I​ is the identity matrix, and we thus assume that the elements in the main 
diagonal of ​​M​t​​​ are the same. We do not impose (as we did for the stable model ​​M​S​​​) 
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that ​​M​1,t​​​ is equal to 0 when the Taylor principle is satisfied. Note that ​​M​1,t​​​ is also 
associated with the unstable eigenvalue, which is always outside the unit circle. 
Thus, the dynamics are unstable when ​​M​1,t​​  ≠  0​, irrespective of the Taylor principle 
being satisfied or not. However, this model still has the possibility to select stable 
dynamics, because it admits a unique stable solution that corresponds to ​​M​1,t​​  =  0​. 
Hence, expectations (i.e., ​​M​1,t​​​) determine the presence of unstable solutions, not the 
policy parameters.

The process ​​M​1,t​​​ is as in (9), where we assume that the martingale process ​​N​t​​​ 
multiplies the indicator function ​​1​​{∥​y​ t−1​​ B  ​∥<​U 

–
 ​}​​​​ for the transversality condition to hold. 

We assume the following process for ​​N​t​​​:

(35)	​ ​N​t​​  = ​ {​​N​t−1​​ / γ + ​ζ​t​​  ​  with probability γ​   
0
​ 

with probability 1 − γ,
​​​

where ​​ζ​t​​  ∼  N(0, ​σ​ ζ​ 2​ )​. Without the shock ​​ζ​t​​​, the process for ​​N​t​​​ would have 0 as 
absorbing state so that the stable solution would be forever active once selected. 
The presence of the shock makes it possible for an economy that is on the stable 
path to jump on an explosive trajectory. This “walk on unstable paths” will only be 
temporary, either because with probability ​(1 − γ)​ the solution will become stable 
again or because of the indicator. As discussed in Section IC, under this hypothesis, 
RE may be violated in the future time period ​​T 

–
​​. However, if ​​U 

–
 ​​ is very big, the prob-

ability that this can happen in the near future is approximately zero, and in order 
to allow for temporarily unstable paths, we need to assume that it is disregarded 
by the agents. When we estimate the model under ​​M​U​​​, we choose ​​U 

–
 ​  = ​ 10​​ 300​​, and 

this ensures that the indicator function is equal to 1 for all the draws and the times 
considered in our sample.

IV.  Empirical Results

A. Data and Subsamples

To compare our results with the seminal work by LS, we estimate the New 
Keynesian model (27)–(30) on the same quarterly postwar data for inflation, output, 
and nominal interest rate used by LS, as available from the AER website. Inflation 
and interest rates are annualized, and the HP filter is used to get a measure of the 
output gap.19

Figure 1 plots the inflation series. From the mid-1960s until the end of the 1970s, 
the United States experienced a period of price instability, also known as the Great 
Inflation. Then, the Volcker disinflation took place and inflation became low, as did 
the volatility of prices and other macroeconomic variables. In contrast to the pre-
vious period, these times are known as the Great Moderation. One popular expla-
nation of this change through the lens of the New Keynesian model (e.g., Clarida, 
Galí, and Gertler 2000) ascribes it to the shift from a passive (i.e., (31) not satisfied) 

19 As from LS (footnote 9, p. 202): (i) output is log real per capita GDP HP detrended over the period 1955:I 
to 1998:IV; (ii) inflation is the annualized percentage change of CPI-U; and (iii) the nominal interest rate is the 
average Federal Funds Rate in percent.



1824 THE AMERICAN ECONOMIC REVIEW MAY 2019

to an active (i.e., (31) satisfied) monetary policy. This interpretation excludes a 
priori unstable paths, even though inflation reached 15 percent. Here, we want to 
answer the following question: would the data prefer an explanation of the Great 
Inflation based on a stable system plus sunspot shocks, as in LS, or one based on 
unstable dynamics? Again we closely follow LS in considering two subsamples: the 
pre-Volcker period, from 1960:I to 1979:II, and a post-1982 period from 1982:IV 
to 1997:IV.20

B. Priors

Table 1 collects the prior distributions for the parameters, again in accordance 
with LS. Differently from LS, we specify the prior for the variance covariance 
matrix of the shock ​​ε​g,t​​​ and ​​ε​z,t​​​ as an Inverse Wishart with scale matrix and degrees 
of freedom as in Table 1. The Inverse Wishart prior allows us to update the posterior 
of the parameters using sufficient statistics, as in the Particle Learning approach 
described above. This is a big advantage in terms of the efficiency of our particle 
filter. Our choice is, however, very similar to the one of LS in terms of mean and 
variances of the three parameters involved (​​σ​g​​​, ​​σ​z​​​, and ​​ρ​gz​​​).

The standard deviation of our sunspot shock is distributed as an Inverse Gamma 
with mean equal to ​0.1​ and standard deviation equal to ​0.05​. This value is lower than 
that in LS because our sunspot shock enters in a multiplicative way.

Under model ​​M​U​​​, we estimate the probability that the economy is on a tempo-
rarily unstable path, that is the parameter ​γ​, for which the prior density is a Beta 
distribution with mean ​0.8​ and standard deviation ​0.15​. A mean of ​0.8​ implies that 
when an unstable trajectory is selected, this temporary situation is expected to last 
5 quarters. Since this is a new parameter, we try different values both for the mean 
and for the standard deviation: the results are robust, and some are discussed below.

20 As in LS, we exclude the Volcker disinflation period where monetary policy is characterized by 
nonborrowed-reserve targeting rather than by an interest rate rule.
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Figure 1. CPI Inflation, Quarterly Data, 1960:I–1997:IV
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Finally, the process ​​M​1,t​​​ at ​t  =  0​ is supposed to be Normally distributed, with 
mean ​0​, and standard deviation ​0.1​, as the prior of the standard deviation of the 
sunspot shock.

C. Estimation Results

Table 2 reports the estimates of the parameters in the two subsamples. For each 
subsample, Table 2 shows the estimates for both the stable (​​M​S​​)​ and the unstable 
(​​M​U​​)​ model and, for comparison, the correspondent estimates in LS (see Table 3, 
p. 206).

Great Inflation Subsample

The Model under Stability (​​M​S​​​).—Under stability, our methodology allows to 
consider contemporaneously determinate and indeterminate equilibria, letting the 
data choose which one to select during the estimation. Table 2 shows that under 
stability (model ​​M​S​​​), our methodology recovers results very similar to LS. This is 
particularly true for the crucial policy rule parameters. Figure 2 displays our prior 
and posterior distributions and the 90 percent intervals in LS for these parameters. 
It shows that our estimation method yields posterior distributions, which are very 
close and statistically indistinguishable from those in LS.21 We interpret this finding 
as corroborating our estimation methodology.

In accordance with most of the literature, our method also points to indetermi-
nacy as the most plausible explanation for the Great Inflation period when tem-
porarily unstable paths are excluded. It suggests that the Fed did not respect the 
Taylor principle, and thus movements in inflation (and output) were due to shifts in 

21 The 90 percent intervals do not overlap only for the slope of the Phillips curve, ​κ​, and for the inverse of the 
elasticity of intertemporal substitution, ​​τ​​ −1​​.

Table 1—Prior Distributions

Parameter Density Mean SD

​​ψ​1​​​ Gamma 1.1 ​0.5​
​​ψ​2​​​ Gamma 0.25 ​0.15​
​​ρ​R​​​ Beta 0.5 ​0.2​

​​π​​ ∗​​ Gamma 4 ​2​

​​r​​ ∗​​ Gamma 2 ​1​
​κ​ Gamma 0.5 ​0.2​

​​τ​​ −1​​ Gamma 2 ​0.5​
​​ρ​g​​​ Beta 0.7 ​0.1​
​​ρ​z​​​ Beta 0.7 ​0.1​
​γ​ Beta 0.8 ​0.15​
​​σ​R​​​ Inverse Gamma 0.31 ​0.16​
​​σ​ζ​​​ Inverse Gamma 0.1 ​0.05​

Variance covariance Density Scale
Degrees 

of freedom

​​Σ​gz​​​ Inverse Wishart
​5​[​​0.38​​ 2​​  0​ 

0
​ 

1
​]​​

​8​
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Table 2—Posterior Estimates

Pre-Volcker 
1960:I–1979:II

Post-82 
1982:IV–1997:IV

Sample: 
1960:I–1997:IV

Parameter ​​M​S​​​ ​​M​U​​​ ​LS​ ​​M​S​​​ ​​M​U​​​ ​LS​ Stochastic Volatility

​​ψ​1​​​ 0.80 0.76 0.77 2.18 2.32 2.19 1.25
[0.66 0.92] [0.61 0.91] [0.64 0.91] [1.53 3.07] [1.44 3.58] [1.38 2.99] [1.12 1.39]

​​ψ​2​​​ 0.16 0.20 0.17 0.17 0.23 0.30 0.21
[0.11 0.20] [0.10 0.34] [0.04 0.30] [0.06 0.38] [0.07 0.66] [0.07 0.51] [0.11 0.41]

​​ρ​R​​​ 0.68 0.60 0.60 0.86 0.85 0.84 0.75
[0.65 0.71] [0.53 0.68] [0.42 0.78] [0.81 0.90] [0.80 0.89] [0.79 0.89] [0.70 0.80]

​​π​​ ⁎​​ 1.90 1.73 4.28 3.28 3.25 3.43 2.88
[1.62 2.25] [1.31 2.47] [2.21 6.21] [2.73 3.82] [2.82 3.73] [2.84 3.99] [2.41 3.41]

​​r​​ ⁎​​ 1.40 1.22 1.13 2.81 3.00 3.01 2.11
[1.29 1.58] [0.93 1.73] [0.63 1.62] [2.17 3.59] [2.40 3.69] [2.21 3.80] [1.69 2.59]

κ 0.14 0.10 0.77 0.30 0.48 0.58 0.36
[0.10 0.18] [0.07 0.14] [0.39 1.12] [0.22 0.39] [0.30 0.81] [0.27 0.89] [0.26 0.51]

​​τ​​ −1​​ 3.41 3.02 1.45 2.56 1.69 1.86 2.07
[2.65 4.51] [2.46 3.74] [0.85 2.05] [1.97 3.37] [1.20 2.45] [1.04 2.64] [1.54 2.78]

​​ρ​g​​​ 0.64 0.68 0.68 0.76 0.78 0.83 0.80
[0.59 0.69] [0.63 0.74] [0.54 0.81] [0.69 0.81] [0.71 0.84] [0.77 0.89] [0.77 0.83]

​​ρ​z​​​ 0.76 0.75 0.82 0.72 0.73 0.85 0.81
[0.72 0.79] [0.67 0.81] [0.72 0.92] [0.59 0.83] [0.61 0.82] [0.77 0.93] [0.75 0.85]

​​ρ​gz​​​ 0.26 0.16 0.14 0.03 0.04 0.36 0.14
[0.19 0.37] [0.06 0.25] [−0.4 0.71] [0.00 0.07] [0.01 0.08] [0.06 0.67] [0.08 0.19]

γ — 0.96 — — 0.04 — —
[0.85 0.99] [0.01 0.12]

​​σ​R​​​ 0.22 0.19 0.23 0.16 0.16 0.18 ​​δ​R​​​  =  0.11
[0.20 0.26] [0.16 0.22] [0.19 0.27] [0.13 0.19] [0.13 0.2] [0.14 0.21] [0.09 0.13]

​​σ​g​​​ 0.35 0.31 0.27 0.20 0.21 0.18 ​​δ​g​​​  =  0.012
[0.30 0.40] [0.24 0.37] [0.17 0.36] [0.16 0.25] [0.17 0.26] [0.14 0.23] [0.010 0.014]

​​σ​z​​​ 1.11 1.00 1.13 0.67 0.63 0.64 ​​δ​z​​​  =  0.02
[0.97 1.29] [0.85 1.31] [0.95 1.30] [0.55 0.87] [0.53 0.76] [0.52 0.76] [0.016 0.026]

​​σ​ς​​​ 0.08 0.06 0.20 — — — —
[0.07 0.10] [0.05 0.08] [0.12 0.27]

Note: 90 percent credibility interval in brackets.

Prior Posterior LS probability intervals

0 0 0 0.2 0.4 0.60.5

Panel A. ρr Panel B. ψ1 Panel C. ψ2

1 1 2

Figure 2. ​​M​S​​​: Comparison between the Posterior Distributions of the Policy Parameters and the 
Probability Intervals of LS
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expectations due to sunspot shocks. The estimated standard deviation of the sunspot 
shock for ​​M​S​​​ is lower than the one estimated by LS. However, these standard devi-
ations are not really comparable because our sunspot shock is a multiplicative one 
that interacts with and amplifies the structural shocks, rather than an additive one as 
in LS’s approach.

Figure 3 displays the transmission mechanism of the structural shocks. It shows 
the generalized impulse response functions (GIRFs) and the 90 percent intervals 
of ​R, x​, and ​π​ to the monetary policy shock in the first row, to the demand shock in 
the second row and to the supply shock in the third row.22 These GIRFs are very 
similar in shape to those of a determinate equilibrium, and to the IRFs in LS under 
their prior 2. Note that the technology shock is the only one that moves output and 
inflation in opposite directions, as required to explain the stagflation episode during 
the last part of the Great Inflation period.

22 The GIRFs show the impulse responses to one standard deviation of each shock, and are computed condi-
tioning on the distribution of ​​M​1,t​​​ at the end of the first subsample, that is 1979:II. The uncertainty of the GIRFs, 
summarized by the 90 percent probability interval, also reflects the posterior distribution of the parameters.
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Recall that the nonlinear multiplicative sunspot shock affects the model only in 
the presence of a structural shock. Hence, to understand how the sunspot shock 
affects the transmission mechanism of our model, we plot in Figure 4 the GIRFs for 
two different values of ​​M​1,t​​​: the solid line corresponds to the pure forward-looking 
solution (​​M​1,t​​  =  0​), and it shows the impulse response functions estimated 
under the stable model before 1974:IV; the dashed line refers to ​​M​1,t​​  =  0.49​, 
that is the value estimated in 1974:IV. The sunspot shock amplifies the effects of the 
structural shock. While it does not qualitatively change the response of the variables, 
it acts as a stochastic volatility shifter.

One of the most interesting aspects of our methodology is the estimated path for ​​
M​1,t​​​ that measures how much expectations deviate from the standard forward-looking 
RE solution. Recall that expectations are selecting the forward-looking solution 
only when ​​M​1,t​​  =  0​. Figure 5 shows the estimated path for ​​M​1,t​​​ in the case of ​​M​S​​​, 
and the corresponding sequential estimate of the policy parameter ​​ψ​1​​​. Figure 5 
clearly depicts the challenge faced by the New Keynesian model in this subsample: 
to simultaneously explain the stable output and inflation paths in the first part of 
the subsample and the stagflation in the second part of the subsample. Until the 
first oil shock, the estimate of ​​M​1,t​​​ points toward expectations aligned on the “stan-
dard” forward-looking solution and, correspondingly, ​​ψ​1​​​ is estimated to satisfy the 
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Taylor principle. Until that point, the data would favor a determinate stable model. 
However, such a model has hard times explaining the data in the second part of the 
subsample. Then, the data switch to favor the only alternative model available under 
stability: an indeterminate model with sunspot shocks. The extra degree of freedom 
provided by the sunspot makes the data choose the indeterminate model both in LS’s 
and in our estimation. Indeed, ​​M​1,t​​​ drifts away from zero, when inflation starts to 
grow in the data.

The literature suggested another plausible possibility to make a stable determi-
nate model able to explain such behavior in the data: a stochastic volatility model 
where the standard deviation of technology shocks increases in the second part of 
the subsample (e.g., Justiniano and Primiceri 2008). We will consider such a model 
in Section V. Our multiplicative sunspot shock yields a similar effect, as explained 
above, but the sunspot shock only occurs if the model is indeterminate under ​​M​S​​​.

The Model under Instability (​​M​U​​​).—The model ​​M​U​​​ makes the data consider also 
temporarily unstable paths. The point estimates in Table 2 are very similar between 
the two models ​​M​S​​​ and ​​M​U​​​. However, by now, it should be clear to the reader that 
the two cases imply very different dynamics. The ​​M​U​​​ case does not imply indeter-
minacy as is usually intended in the literature, that is, an infinite number of stable 
RE trajectories. It does imply another sort of indeterminacy, in the sense that we let 
the data choose among an infinite number of unstable, but temporary trajectories, 
irrespective of whether the Taylor principle is satisfied. As explained in Section III, 
whatever the value of ​​ψ​1​​,​ there is always an unstable eigenvalue. However, we do 
not force the model to the forward-looking solution with respect to this unstable 
eigenvalue in the ​​M​U​​​ case. It follows that despite the parameter estimates being very 
similar between the ​​M​S​​​ and ​​M​U​​​ cases, ​​M​U​​​ gives a completely different interpretation 
about the instability of that period. The dynamics of ​​M​U​​​ are structurally unstable, 
independently of the Taylor rule parameters.

Figure 6 shows the GIRFs in this case. Once more, a supply shock generates 
stagflation. Most importantly, however, stagflation could now also be generated by 
a monetary policy shock. In particular, a contractionary monetary policy shock can 
be inflationary: inflation drops on impact but then starts rising and it is above steady 
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state from the fourth quarter onward. Interestingly, a somewhat similar behavior is 
highlighted in LS under their preferred prior 1: “an increase in the nominal interest 
rate can have a slightly inflationary effect” (p. 207, see Figure 3, p. 208 and the 
discussion at pp. 207–208 therein). They conclude that “before 1979 indeterminacy 
substantially altered the propagation of shocks” (LS, abstract).23 Similarly, insta-
bility in our framework substantially alters the transmission mechanism. However, 
in our case, output remains below steady state, so that a monetary policy shock 
could generate an opposite response of output and inflation. In the LS case, instead, 
inflation and output move in the same direction after a monetary policy shock: after 
dropping on impact, they both become slightly positive. The same consideration 
also applies to the demand shock: both output and inflation increase on impact, but 
inflation turns negative in the fourth quarter. Our framework therefore seems to be 
able to provide a transmission mechanism more prone to accommodate stagflation 
under instability.

The transmission mechanism of the sunspot shock is also quite different in our 
case. In LS, the impulse response function to a sunspot shock under indeterminacy 

23 “This finding suggests that the fit of the model can be improved by deviating from the baseline solution and 
altering the propagation of the structural shocks” (LS, p. 205).
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does imply (again) that output and inflation move in the same direction (see LS, 
Figure 2, p. 207). Intuitively, if a sunspot shock leads to a self-fulfilling increase in 
inflation, then the real interest rate decreases, due to the passive monetary policy, and 
thus output increases, rather than decreases. Thus, the structural dynamics implied 
by an indeterminate stable model do not seem to be well suited to explain stagfla-
tion episodes after an additive sunspot shock. In our setup, instead, the nonlinear 
multiplicative sunspot shock amplifies the responses of the model to a structural 
shock. Similarly to Figure 4, Figure 7 shows the GIRFs for two different values of ​​
M​1,t​​​ in the ​​M​U​​​ case: the solid line corresponds to the pure forward-looking solution 
(​​M​1,t​​  =  0​); the dashed line refers to ​​M​1,1​​  =  0.52​, so that the initial value is the one 
estimated in 1974:IV. As in the ​​M​S​​​ case, the sunspot shock amplifies the GIRFs, but 
the implied dynamics are very different in the ​​M​U​​​ case. The amplification is similar 
on impact between the two cases, but then the unstable root induces an explosive 
dynamics such that initially the distance between the two lines increases over time. 
The economy is traveling on an explosive trajectory and it diverges away from the 
stable forward-looking solution. However, the walk on the unstable trajectory is 
temporary and the GIRFs exhibits a boom-bust type of behavior: given the assumed 
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process for ​​M​1,t​​​, at a certain stochastic date, the economy converges back to the 
unique stable forward-looking solution.

The estimated path for the latent process ​​M​1,t​​​ in Figure 8 is again very instructive. 
Recall that we let the data choose: they could still choose a stable forward-looking 
solution when ​​M​1,t​​​ is estimated to equal 0. Similarly to the previous case, the esti-
mate of ​​M​1,t​​​ is initially equal to 0, but then it moves away from 0 (the 90 percent 
interval exhibits a mass above 0), exactly when inflation starts increasing away from 
its steady-state value. If we allow for temporarily unstable paths, the estimation then 
unambiguously selects those to explain the data in this period.

It is possible to compare the relative fit of the stable (​​M​S​​​) and unstable (​​M​U​​​) mod-
els by computing the sequential Bayes factor as in West (1986). The Bayes factor is 
the model likelihood ratio,

(36)	​ ​L​t​​  = ​ 
p​(​D​t​​ | ​D​0:t−1​​​​, ​M​S​​)​  ___________  
p​(​D​t​​ | ​D​0:t−1​​​​, ​M​U​​)​ ​​,

and measures the relative success of ​​M​S​​​ and ​​M​U​​​ in predicting the data: values of ​​L​t​​​ 
lower than 1 indicate a worse predictive performance of ​​M​S​​​ than the alternative ​​M​U​​​. 
West (1986) suggests to compute the Bayes factor sequentially as ​​W​t​​  
= ​ L​t​​ ​L​t−1​​ ⋯ ​L​1​​​. Here, ​​W​t​​​ is called the cumulative Bayes factor and it assesses the 
relative fit of the two models by considering all observations sequentially. Figure 9 
shows twice the natural logarithm of the cumulative Bayes factor ​​W​t​​​ (as suggested 
by Kass and Raftery 1995) together with the path of inflation. Therefore, a value 
of 0 of the logarithm of the cumulative Bayes factor means that the two models 
have the same performance in terms of predictive likelihood; while a positive value 
means that ​​M​S​​​ is preferred (and vice versa for negative values). The advantage of 
the cumulative Bayes factor, with respect to the conventional measures in Bayesian 
econometrics, is that we can compare two models over time. In our specific case, 
as expected, the unstable model is strongly preferred from the 1970s onward, when 
inflation increases and reaches high values. According to the Kass and Raftery (1995, 
p. 777) classification, there is “very strong” evidence in favor of ​​M​U​​​ from the begin-
ning of the 1970s. In particular, the cumulative Bayes factor reaches a very low level 
from 1974:I onward.
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To conclude, our methodology allows the data to choose between different pos-
sible alternatives: determinacy, indeterminacy and temporary instability. When the 
data are allowed this possibility, they unambiguously select the unstable model to 
explain the stagflation period in the 1970s.

Post-1982 Subsample.—In the second subsample, our estimates under stability 
again reproduce the same results as in LS (see Table 2). There is no statistically sig-
nificant difference between our parameter estimates and those in LS, again signaling 
the reliability of our estimation methodology (see Figure 10). The Taylor principle 
is satisfied and hence the data choose the unique determinate forward-looking solu-
tion under ​​M​S​​​: there is no sunspot shock and the process for ​​M​1,t​​​ degenerates to the 
value of 0.

Also in the case of model ​​M​U​​​, the estimation yields results similar to LS. Panel  A 
in Figure 11 shows that ​​M​1,t​​​ is estimated to be equal to 0 for the whole period, mean-
ing that the estimation chooses the standard MSV solution under determinacy, rather 
than a temporarily unstable path (i.e., ​​M​1,t​​ ≠  0​). Coherently, the sequential estimate 
of the parameter ​γ​ in panel B of Figure 11 implies a negligible probability that the 
economy travels on a temporarily unstable path.24 In the Great Moderation sample, 
the final point estimate of ​γ​ is extremely low (0.04 in Table 2), despite the fact that 
the prior was set to 0.8, as in the Great Inflation sample (where the posterior point 
estimate is 0.96). The data are thus, in this case, extremely informative, and strongly 

24 From (35), ​γ​ represents the probability of ​​M​1,t​​​ being different from 0.
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point toward the stable MSV solution, which is the same as the one imposed by the 
standard RE methods.

Comparing the two models as in the previous case using the cumulative Bayes 
factor presents mild evidence in favor of the (less parameterized) stable model (see 
Figure 12). The evidence is not strong though, but “weak” until 1992 and then “pos-
itive,” because the two models deliver very similar estimates.

Prior on ​γ​.—In terms of point estimates, our results are very robust to chang-
ing the priors of our parameters. A prior of 0.9 for ​γ​ would deliver very similar 
results, and the cumulative Bayes factor would favor our benchmark choice even 
more strongly. A tighter prior on ​γ​ (i.e., the standard error prior equals 0.05 rather 
than 0.15) improves the fit of the model in the Great Inflation sample, because the 
sequential estimate of ​γ​ is very stable around 0.8. For the same reason, however, the 
estimation performs worse in the Great Moderation period. Notably, it is not able to 
recover the standard rational expectation MSV solution for that subsample, because 
the tighter prior does not allow the particles to sufficiently explore that region of the 
parameter space, and the sequential estimate of ​γ​ fluctuates quite tightly around 0.8. 
Hence, it is very important in our approach to allow for a sufficiently wide prior over 
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the parameter ​γ​ to give the estimation a chance to adequately explore all different 
regions of the parameter space corresponding to the cases of determinacy, indeter-
minacy and temporarily explosive paths.

V.  A Comparison with a Stochastic Volatility Model

A large empirical literature shows how stochastic volatility is an important fea-
ture of US macroeconomic variables in the sample we analyze. Cogley and Sargent 
(2005), Primiceri (2005), and Justiniano and  Primiceri (2008) find evidence in 
favor of high volatility in the 1970s and a subsequent decrease during the Great 
Moderation.

On the one hand, our methodology rationalizes this evidence through the hypoth-
esis of time variation in the agents’ expectations formation process, as the esti-
mated values of ​​M​1,t​​​ amplify the effects of structural shocks during the last part 
of the first subsample (see Figures 4 and 7). On the other hand, our framework 
imposes a strong link between the “walks on unstable trajectories” and stochastic 
volatility: under the unstable model ​​M​U​​​, stochastic volatility always occurs in the 
presence of temporarily unstable paths, and it is absent only when the unique stable 
solution is selected. This restriction may be too tight, and it might be the case that 
our ​​M​U​​​ model is favored by the data because of the implied stochastic volatility 
rather than because of the intrinsic temporarily unstable dynamics. In other words, 
a model with stochastic volatility without unstable dynamics might be sufficient to 
adequately interpret the data.
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To investigate this issue, we compare the fit of the unstable model ​​M​U​​​ with a 
stochastic volatility model under determinacy during the Great Inflation. As we will 
see, the results show that while modeling the heteroskedasticity of shocks in a flex-
ible way leads to some improvements, temporarily unstable paths remain a key fea-
ture to interpret the behavior of inflation, GDP and the interest rate during the 1970s.

Closely following Justiniano and  Primiceri (2008), the logarithm of the 
standard error of each shock is described by a random walk process: ​log ​σ​i,t​​  
=  log ​σ​i,t−1​​​​ + ​ν​i,t​​​, where ​​ν​i,t​​  ∼  N(0, ​δ​ i​ 2​  )​ and ​i  =  g, z, R​. We impose determinacy, 
then ​​M​1,t​​  =  0, ∀ t​, and we only explore the region of the parameter space that sat-
isfies the Taylor principle. Moreover, we estimate the model considering the entire 
sample from 1960:I to 1997:IV.

Inference on the parameters and the time-varying volatilities is performed using 
the same econometric strategy as above. Note that conditional on the values of the 
volatilities, the model is linear and Gaussian. Then, we simply proceed in analogy 
with the estimation of models ​​M​S​​​ and ​​M​U​​​, and we treat the time variation in the 
variances in the same way as the time variation in ​​M​1,t​​​ (see the online Appendix for 
details).

The prior distributions on the parameters are the same as in Table 1, with the 
exception that now we only allow for determinacy. In practice, this is simply done 
by setting the particle weight equal to 0 whenever the parameters are such that the 
Taylor principle is not satisfied. For the variances of the shocks to the volatilities, 
we assume an Inverse Gamma distribution with mean equal to 0.02 and 3 degrees of 
freedom.25 Finally, we assume that the standard deviations at time 0 have the same 
prior distribution as in the time invariant case, reported in Table 1.

The last column of Table 2 displays the posterior distribution of the parameters, 
and Figure 13 shows the estimated pattern of the time-varying standard deviations 
of the different shocks. With respect to Justiniano and Primiceri (2008), we work 
with a smaller model and a shorter sample period. Nevertheless, we find very similar 
results. First, the model accounts for the reduction in the volatility of the US macro-
economic variables during the Great Moderation due to a substantial decrease in the 
volatility of exogenous disturbances. Second, the degree of stochastic volatility is 
not the same for all shocks. As in Justiniano and Primiceri (2008), the disturbance to 
monetary policy, which is the unique directly comparable shock, exhibits the largest 
variation in the standard deviation. Moreover, the pattern of stochastic volatility is 
remarkably similar to that in Justiniano and Primiceri (2008). Finally, for the two 
other shocks, we find a decline of roughly one-third in the last part of the sample, 
again in line with the results in Justiniano and Primiceri (2008).

In Table 3, we compare the overall fit of this model during the Great Inflation 
period, with both the stable model ​​M​S​​​ and the unstable model ​​M​U​​​. The model with 
determinacy and stochastic volatility is favored by the Bayes factor when compared 
to the stable model ​​M​S​​​. In ​​M​S​​​, the variations in the variances are all related to one 
common component, that is ​​M​1,t​​​, while the standard deviation of the monetary 

25 Justiniano and Primiceri (2008) set the prior mean equal to 0.01, one-half of what we assume. In our model 
we find that this specification restricts the time variation in the standard deviations too much, penalizing the model 
with determinacy and stochastic volatility. Under our prior, instead, we find results that are very similar to those of 
Justiniano and Primiceri (2008), as described below.
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policy shock behaves differently with respect to the other two, when more flexibility 
is allowed. This finding does not necessarily imply that the restrictions imposed 
by our method are in general too tight. The size of the model we consider is small, 
allowing for only one element in the matrix ​​M​t​​​ to be time-varying (i.e., only inde-
terminacy of order one), when stability is imposed.

In estimating the model under instability, we choose to limit ourselves to the 
case of only one degree of freedom, setting the elements in the main diagonal of 
the matrix ​​M​t​​​ to the same stochastic process. Then, also the unstable model ​​M​U​​​ 
penalizes the variability of the variances in the same way as model ​​M​S​​​. Despite this 
limit, Table 3 shows that the Bayes factor clearly favors the unstable model: the 
evidence for model ​​M​U​​​ is labeled as “very strong” in the Kass and Raftery (1995) 
classification.
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Figure 13. Time-Varying Standard Deviation of Each Shock: Model with Determinacy 
and Stochastic Volatility

Table 3—Model Comparison with Determinacy 
and Stochastic Volatility, 1960:I–1979:II

Alternative model ​2 log​(Bayes factor)

​​M​S​​​ ​−7.2611​
​​M​U​​​ ​16.2346​

Note: A positive value means evidence in favor of the alternative model. 
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This result suggests that temporarily unstable paths are a key feature to describe 
the unstable pattern of the US macroeconomic variables during the Great Inflation 
period. Therefore, we conclude that stochastic volatility alone, without explosive 
dynamics, is not able to fully capture the unstable behavior of the data during the 
Great Inflation period.

VI.  Conclusions

We propose a novel framework to consider a broader class of solutions to stochas-
tic linear RE models.

Theoretically, we provide two main generalizations: our framework allows for 
the possibility of the economy walking on temporarily unstable paths and it gener-
ates time-varying parameter solutions and stochastic volatility.

Empirically, we propose an econometric methodology that allows the data to 
choose among the different RE alternatives: determinacy, indeterminacy, and tem-
porary instability, without imposing them a priori in the estimation. This methodol-
ogy can be used to test the empirical relevance of temporarily unstable dynamics.

Finally, we apply this approach to the data to explain US inflation dynamics in 
the Great Inflation and Great Moderation period. The empirical evidence suggests 
that the Great Inflation in the United States can be explained by temporarily unstable 
paths. The usual practice of excluding a priori unstable solutions does not seem to be 
supported by the data, which, if allowed, unambiguously select the unstable model 
to explain the stagflation period in the 1970s. Our framework provides a different 
interpretation of the Great Inflation from a policy perspective. Despite the fact that our 
estimates point to a passive monetary policy behavior in the 1970s, our framework 
implies that this is not the cause in itself of unstable inflation dynamics, which were 
instead due to drifting expectations, independently of the stance of monetary policy.

Our analysis therefore suggests that unstable paths can be empirically relevant. 
This result may call for a rethinking of the stability criterion as the selection mecha-
nism, and for theoretically considering the possibility that RE could push the econ-
omy to temporarily walk along unstable paths.

This line of research is still in its infancy and can be expanded in many directions. 
A first important direction would be to endogenize the expectations formation pro-
cess that drives the (exogenous) multiplicative sunspot and then estimating it on the 
data, in a spirit similar to the escape dynamics literature. Moreover, the estimation 
indicates a possible link between unstable paths and the monetary policy parame-
ter, which is reminiscent of the debate about monetary policy and the anchoring of 
inflation expectations.

Second, extending the framework to nonlinear models and nonlinear solution 
methods is a second direction for future research. The linear approximation of a 
model could become unreliable if the system drifts too far away from the steady 
state by following a temporarily unstable path. The extension should be feasible 
because there are available methods to solve nonlinear models and the econometric 
strategy does not depend on the model being linear. An important application, then, 
would be to use a model with the zero lower bound (see, e.g., Gust et al. 2017) to 
investigate how the zero lower bound affects the process of expectations formation 
and hence the stability of the economy.
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Third, one could modify the framework to allow a subset of variables to explode. 
Following the insights in Cochrane (2011), for example, nominal variables do not 
need to satisfy a transversality condition.

Finally, there are many potential applications of our framework, notably, but not 
exclusively, finance, where boom and bust episodes of asset prices (stock, houses, 
etc.) is a pervasive phenomenon.

Appendix A. Appendix to Section I

A1. Derivation of Equation (5)

Use equation (4) and write it recursively (or simply consider only fundamental 
solutions where ​​ζ​t​​  =  0, ∀ t​, in (3) and substitute in (2))

(A1)	​ ​ξ​t​​  =  M​ ∑ 
i=1

​ 
t

  ​​ ​θ​​ i​ ​ε​t+1−i​​​​  =  θ​ξ​t−1​​ + θM​ε​t​​.​

Substitute ​​ε​t​​  = ​ y​t​​ − ​ 1 _ θ ​ ​ξ​t​​​ from (1) to get (assuming ​M  ≠  1​)

	​ ​ξ​t​​  =  θ​ξ​t−1​​ + θM​ε​t​​  =  θ​ξ​t−1​​ + θM​(​y​t​​ − ​ 1 _ θ ​ ​ξ​t​​)​  ⇒​

	​ ​ξ​t​​  = ​   θM _ 
1 + M ​ ​y​t​​ + ​  θ _ 

1 + M ​ ​ξ​t−1​​.​

Roll backward

	​ ​ξ​t​​  = ​   θM _ 
1 + M ​ ​y​t​​ + ​  θ _ 

1 + M ​ ​ξ​t−1​​

	 = ​   θM _ 
1 + M ​ ​y​t​​ + ​  θ _ 

1 + M ​​(​  θM _ 
1 + M ​ ​y​t−1​​ + ​  θ _ 

1 + M ​ ​ξ​t−2​​)​

	 = ​   θM _ 
1 + M ​ ​y​t​​ + M ​​(​  θ _ 

1 + M ​)​​​ 
2
​ ​y​t−1​​ + ​​(​  θ _ 

1 + M ​)​​​ 
2
​ ​ξ​t−2​​

	 =  ⋯ 

	 = ​   θM _ 
1 + M ​ ​y​t​​ + M ​​(​  θ _ 

1 + M ​)​​​ 
2
​ ​y​t−1​​ + ⋯ + M ​​(​  θ _ 

1 + M ​)​​​ 
t

​ ​y​1​​ + ​​(​  θ _ 
1 + M ​)​​​ 

t

​ ​ξ​0​​​.

Assuming a period 0 where ​​ξ​0​​  = ​ E​0​​ ​(​y​1​​)​  =  0​ yields equation (5) in the main text

(A2)	​ ​ξ​t​​  =  M​ ∑ 
i=1

​ 
t

  ​​ ​​(​  θ _____ 
1 + M ​)​​​ 

i

​ ​y​t+1−i​​​​.​
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A2. Derivation of Equation (8)

From (1), (6), and (7), we can show that our solution for ​​y​t​​​ implies time-varying 
parameters and stochastic volatility. From the definition of the forecast error: 
​​η​t​​  = ​ y​t​​ − ​E​t−1​​​( y​t​​ )  ⇒  ​​​y​t​​  = ​ η​t​​ + ​ξ​t−1​​.​ Substitute ​​η​t​​​ from (7) and ​​ξ​t−1​​​ from (6) to 
get

	​ ​y​t​​  = ​ (1 + ​M​t​​)​ ​ε​t​​ + ​(​M​t​​ − ​M​t−1​​)​​ ∑ 
i=1

​ 
t−1

​​ ​θ​​ i​ ​ε​t−i​​ + ​M​t−1​​ θ​ ∑ 
i=0

​ 
t−2

​​​θ​​ i​ ​ε​t−1−i​​

	 = ​ (1 + ​M​t​​)​ ​ε​t​​ + ​(​M​t​​ − ​M​t−1​​)​​ ∑ 
i=1

​ 
t−1

​​ ​θ​​ i​ ​ε​t−i​​ + ​M​t−1​​ ​ ∑ 
i=1

​ 
t−1

​​​θ​​ i​ ​ε​t−i​​

	 = ​ (1 + ​M​t​​)​ ​ε​t​​ + ​M​t​​ ​ ∑ 
i=1

​ 
t−1

​​ ​θ​​ i​ ​ε​t−i​​  = ​ (1 + ​M​t​​)​ ​ε​t​​ + ​  ​M​t​​ _ ​M​t−1​​
 ​ ​ξ​t−1​​      then by (1)

	 = ​ (1 + ​M​t​​)​ ​ε​t​​ + ​  ​M​t​​ _ ​M​t−1​​
 ​ ​(θ ​y​t−1​​ − θ ​ε​t−1​​)​​.

Hence,

(A3)	​ ​y​t​​  = ​ α​t​​ ​y​t−1​​ − ​α​t​​ ​ε​t−1​​ + ​(1 + ​M​t​​)​ ​ε​t​​   if and only if  ​M​t−1​​  ≠  0​,

with ​​α​t​​  =  θ ​M​t​​ /​M​t−1​​​.
Note that if ​​M​t−1​​  =  0​, from (6) ​​ξ​t−1​​  = ​ M​t−1​​ θ ​∑ i=0​ t−2 ​​ ​θ​​ i​ ​ε​t−1−i​​  =  0,​ so we 

obtain the forward-looking solution for ​​y​t−1​​​, i.e., ​​y​t−1​​  = ​ ε​t−1​​​. From an economic 
point of view, this is a period where agents coordinate their expectations on the 
forward-looking solution, so the system has returned to the stable solution (recall 
that it is always an admissible solution). In this case, then from (2), in the next period 
we have ​​E​t​​​ (y​t+1​​)  ≡ ​ ξ​t​​  =  −θ ​ε​t​​ + θ ​η​t​​​, where ​​η​t​​  ≡ ​ y​t​​ − ​ξ​t−1​​  = ​ y​t​​​. Substitute ​​η​t​​​, 
rearrange so ​​y​t​​  = ​ ε​t​​ + ​ 1 _ θ ​ ​ξ​t​​​, and then using (6),

(A4)� ​​η​t​​  = ​ y​t​​  = ​ ε​t​​ + ​ 1 _ θ ​​ξ​t​​  = ​ ε​t​​ + ​ 1 _ θ ​​(​M​t​​ θ​ ∑ 
i=1

​ 
t−1

​​ ​θ​​ i​​ε​t−i​​)​ = ​ (1 + ​M​t​​)​​ε​t​​ + ​M​t​​ ​ ∑ 
i=1

​ 
t−1

​​ ​θ​​ i​​ε​t−i​​,​

which is coherent with (7) when ​​M​t−1​​  =  0​.
Finally note that, since ​​y​ t​ F​  = ​ ε​t​​​ and ​​y​ t​ B​  =  −​∑ i=1​ t−1 ​​ ​θ​​ i​ ​ε​t−i​​​, then the solution can be 

written as in Blanchard (1979): ​​y​t​​  =  (1 + ​M​t​​ ) ​y​ t​ F​ − ​M​t​​ ​y​ t​ B​.​
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