9 research outputs found

    DeepHMC : un algorithme Hamiltonian Monte Carlo utilisant un rĂ©seau de neurones profond pour l’infĂ©rence bayesienne des sources binaires compactes d’ondes gravitationnelles

    No full text
    The first direct detection of gravitational waves by the LIGO interferometers in 2015, originating from a compact binary system of black holes, opened the path of gravitational wave astronomy. It was followed by numerous detections, in particular two years later the merger of two neutron stars (a BNS system), named GW170817, which allowed its electromagnetic counterpart observation on a wide spectrum. The many implications of these observations, in fields as diverse as cosmology, ultra-dense matter or modified gravity theories, opened a new era in multi-messenger astronomy and confirmed the importance of gravitational wave astronomy. To estimate the most likely values of the parameters defining the source of the wave (e.g. component masses, distance, angles in the sky) and the uncertainties surrounding our measurement, the LIGO-Virgo collaboration uses Bayesian inference of the posterior probability distribution of the parameters. At the moment algorithms such as Markov Chain Monte Carlo (MCMC) allow this inference by random walking in parameter space to sample the posterior distribution. However these algorithms require from weeks to months to converge when analyzing long duration signals, typically BNSs such as GW170817. As detectors are being improved, the rate of detections and duration of exploitable signal increase which create an important tension with the time required to perform each analysis. The next observation run indeed foresees as many as 70 BNSs over a year. To answer this challenge, we propose in this thesis a different algorithm, the Hamiltonian Monte Carlo (HMC), which replaces the random walk behaviour inherent to standard MCMCs by Hamiltonian trajectories which use the gradient of the posterior distribution to sample it efficiently. As no closed form solution exist to compute these gradient analytically at each step of a trajectory, the latter must be derived numerically which is computationally too expensive for the HMC to be competitive. To circumvent this, we have developed the algorithm DeepHMC which replaces numerical gradients with a deep neural network approximation a thousand times faster to compute. After training the network on a pre-generated set of numerical gradients, the neural network is able to predict accurately the gradient values at new positions in parameter space. Our algorithm was successfully tested on GW170817 in a 12 dimensional analysis were alignedspins and tidal deformabilities were included. We then performed an apples-to-apples comparison with the official MCMC algorithm of the collaboration and proved we obtain the same statistical estimates of the parameters in only about three days which translates into a factor 80 speed-up in CPU time. While successful on GW170817, DeepHMC’s performances will need to be tested on a larger set of signals before it might be used by the collaboration. Nonetheless, our results demonstrate that DeepHMC appears as a promising answer to the increasing rate of detections and signal durations. It would allow an accurate and fast inference of future gravitational wave signals to exploit fully the scientific potential offered by gravitational wave astronomy.En septembre 2015 a eu lieu la premiĂšre dĂ©tection directe d’une onde gravitationnelle par les interfĂ©romĂštres LIGO, mettant en Ă©vidence la coalescence d’un systĂšme binaire compact composĂ© de deux trous noirs et ouvrant ainsi la voie de l’astronomie gravitationnelle. S’ensuivirent de nombreuses dĂ©tections, notamment celle, deux ans plus tard, de la fusion de deux Ă©toiles Ă  neutrons(systĂšme dit BNS), nommĂ©e GW170817, qui a permis d’observer sa contre-partie Ă©lectromagnĂ©tique dans une large gamme spectrale. Les multiples implications de ces observations dans des domaines aussi divers que la cosmologie, la matiĂšre ultra-dense ou les thĂ©ories de gravitĂ© modifiĂ©e ont ouvert une nouvelle Ăšre dans l’astronomie multi-messager et confirmĂ© l’essor de l’astronomie gravitationnelle. L’estimation des valeurs les plus probables des paramĂštres qui dĂ©finissent la source de l’onde (e.g. masses des deux composants, distance, angles dans le ciel) et des incertitudes entourant notre mesure est effectuĂ©e par infĂ©rence bayesienne de la distribution postĂ©rieure en probabilitĂ© des paramĂštres. À l’heure actuelle, des algorithmes de type Markov Chain Monte Carlo (MCMC) permettent ce travail en utilisant une marche alĂ©atoire dans l’espace des paramĂštres qui Ă©chantillonne adĂ©quatement la distribution postĂ©rieure. Cependant ces algorithmes nĂ©cessitent plusieurs semaines (mois) pour converger lorsqu’ils analysent des signaux gravitationnels de longue durĂ©e, typiquement des BNSs comme GW170817. À mesure que les dĂ©tecteurs sont amĂ©liorĂ©s, non seulement la frĂ©quences de dĂ©tection augmente mais les signaux sont Ă©galement observĂ©s sur des durĂ©es plus longues ce qui crĂ©e une tension croissante au vue de l’important temps de calcul nĂ©cessaire Ă  l’estimation de leur paramĂštres. La prochaine campagne d’observation prĂ©voie en effet jusqu’à 70 BNSs dĂ©tectĂ©s sur une annĂ©e. Pour rĂ©pondre Ă  cette problĂ©matique, nous proposons dans cette thĂšse un algorithme alternatif, le Hamiltonian Monte Carlo (HMC), qui remplace la marche alĂ©atoire des algorithmes MCMC classiques par des trajectoires hamiltoniennes qui utilisent le gradient de la distribution pour l’échantillonner efficacement. N’existant pas de forme analytique permettant un calcul rapide des gradients en chaque point des trajectoires, ces derniers doivent ĂȘtre calculĂ©s numĂ©riquement ce qui est trĂšs coĂ»teux en ressources informatiques, et, dans ces conditions, le HMC n’apparaĂźt pas plus compĂ©titif que ses homologues. Pour surmonter cet obstacle, nous avons dĂ©veloppĂ© l’algorithme DeepHMC qui permet de remplacer le calcul numĂ©rique des gradients par une approximation analytique un millier de fois plus rapide. Pour ce faire DeepHMC utilise un rĂ©seau de neurones profond qui, aprĂšs avoir Ă©tĂ© entraĂźnĂ© sur un ensemble de gradients numĂ©riques initialement calculĂ©s, est capable de prĂ©dire les gradients en des points de l’espace des paramĂštres encore inexplorĂ©s. Notre algorithme a Ă©tĂ© calibrĂ© et testĂ© avec succĂšs sur le signal GW170817 dans un modĂšle Ă  12 paramĂštres qui inclut les composantes axiales des spins des Ă©toiles Ă  neutrons ainsi que leur paramĂštre de dĂ©formation. Une comparaison de DeepHMC avec l’algorithme MCMC de la collaboration LIGO-Virgo montre que nous obtenons les mĂȘmes estimations de paramĂštres maisen un peu moins de trois jours, ce qui correspond Ă  un facteur d’accĂ©lĂ©ration d’environ 80 en temps CPU. TestĂ© avec succĂšs sur le signal GW170817, il faudra encore confirmer les performances de DeepHMC sur un panel plus large de signaux gravitationnels avant de pouvoir l’utiliser en complĂ©ment des algorithmes actuels. Toutefois nos travaux dĂ©montrent que DeepHMC s’avĂšre trĂšs prometteur pour rĂ©pondre aux frĂ©quences croissantes de dĂ©tection, ce qui permettra une analyse fiable et rapide des futurs signaux pour exploiter pleinement tout le potentiel de l’astronomie gravitationnelle

    DeepHMC : un algorithme Hamiltonian Monte Carlo utilisant un rĂ©seau de neurones profond pour l’infĂ©rence bayesienne des sources binaires compactes d’ondes gravitationnelles

    No full text
    The first direct detection of gravitational waves by the LIGO interferometers in 2015, originating from a compact binary system of black holes, opened the path of gravitational wave astronomy. It was followed by numerous detections, in particular two years later the merger of two neutron stars (a BNS system), named GW170817, which allowed its electromagnetic counterpart observation on a wide spectrum. The many implications of these observations, in fields as diverse as cosmology, ultra-dense matter or modified gravity theories, opened a new era in multi-messenger astronomy and confirmed the importance of gravitational wave astronomy. To estimate the most likely values of the parameters defining the source of the wave (e.g. component masses, distance, angles in the sky) and the uncertainties surrounding our measurement, the LIGO-Virgo collaboration uses Bayesian inference of the posterior probability distribution of the parameters. At the moment algorithms such as Markov Chain Monte Carlo (MCMC) allow this inference by random walking in parameter space to sample the posterior distribution. However these algorithms require from weeks to months to converge when analyzing long duration signals, typically BNSs such as GW170817. As detectors are being improved, the rate of detections and duration of exploitable signal increase which create an important tension with the time required to perform each analysis. The next observation run indeed foresees as many as 70 BNSs over a year. To answer this challenge, we propose in this thesis a different algorithm, the Hamiltonian Monte Carlo (HMC), which replaces the random walk behaviour inherent to standard MCMCs by Hamiltonian trajectories which use the gradient of the posterior distribution to sample it efficiently. As no closed form solution exist to compute these gradient analytically at each step of a trajectory, the latter must be derived numerically which is computationally too expensive for the HMC to be competitive. To circumvent this, we have developed the algorithm DeepHMC which replaces numerical gradients with a deep neural network approximation a thousand times faster to compute. After training the network on a pre-generated set of numerical gradients, the neural network is able to predict accurately the gradient values at new positions in parameter space. Our algorithm was successfully tested on GW170817 in a 12 dimensional analysis were alignedspins and tidal deformabilities were included. We then performed an apples-to-apples comparison with the official MCMC algorithm of the collaboration and proved we obtain the same statistical estimates of the parameters in only about three days which translates into a factor 80 speed-up in CPU time. While successful on GW170817, DeepHMC’s performances will need to be tested on a larger set of signals before it might be used by the collaboration. Nonetheless, our results demonstrate that DeepHMC appears as a promising answer to the increasing rate of detections and signal durations. It would allow an accurate and fast inference of future gravitational wave signals to exploit fully the scientific potential offered by gravitational wave astronomy.En septembre 2015 a eu lieu la premiĂšre dĂ©tection directe d’une onde gravitationnelle par les interfĂ©romĂštres LIGO, mettant en Ă©vidence la coalescence d’un systĂšme binaire compact composĂ© de deux trous noirs et ouvrant ainsi la voie de l’astronomie gravitationnelle. S’ensuivirent de nombreuses dĂ©tections, notamment celle, deux ans plus tard, de la fusion de deux Ă©toiles Ă  neutrons(systĂšme dit BNS), nommĂ©e GW170817, qui a permis d’observer sa contre-partie Ă©lectromagnĂ©tique dans une large gamme spectrale. Les multiples implications de ces observations dans des domaines aussi divers que la cosmologie, la matiĂšre ultra-dense ou les thĂ©ories de gravitĂ© modifiĂ©e ont ouvert une nouvelle Ăšre dans l’astronomie multi-messager et confirmĂ© l’essor de l’astronomie gravitationnelle. L’estimation des valeurs les plus probables des paramĂštres qui dĂ©finissent la source de l’onde (e.g. masses des deux composants, distance, angles dans le ciel) et des incertitudes entourant notre mesure est effectuĂ©e par infĂ©rence bayesienne de la distribution postĂ©rieure en probabilitĂ© des paramĂštres. À l’heure actuelle, des algorithmes de type Markov Chain Monte Carlo (MCMC) permettent ce travail en utilisant une marche alĂ©atoire dans l’espace des paramĂštres qui Ă©chantillonne adĂ©quatement la distribution postĂ©rieure. Cependant ces algorithmes nĂ©cessitent plusieurs semaines (mois) pour converger lorsqu’ils analysent des signaux gravitationnels de longue durĂ©e, typiquement des BNSs comme GW170817. À mesure que les dĂ©tecteurs sont amĂ©liorĂ©s, non seulement la frĂ©quences de dĂ©tection augmente mais les signaux sont Ă©galement observĂ©s sur des durĂ©es plus longues ce qui crĂ©e une tension croissante au vue de l’important temps de calcul nĂ©cessaire Ă  l’estimation de leur paramĂštres. La prochaine campagne d’observation prĂ©voie en effet jusqu’à 70 BNSs dĂ©tectĂ©s sur une annĂ©e. Pour rĂ©pondre Ă  cette problĂ©matique, nous proposons dans cette thĂšse un algorithme alternatif, le Hamiltonian Monte Carlo (HMC), qui remplace la marche alĂ©atoire des algorithmes MCMC classiques par des trajectoires hamiltoniennes qui utilisent le gradient de la distribution pour l’échantillonner efficacement. N’existant pas de forme analytique permettant un calcul rapide des gradients en chaque point des trajectoires, ces derniers doivent ĂȘtre calculĂ©s numĂ©riquement ce qui est trĂšs coĂ»teux en ressources informatiques, et, dans ces conditions, le HMC n’apparaĂźt pas plus compĂ©titif que ses homologues. Pour surmonter cet obstacle, nous avons dĂ©veloppĂ© l’algorithme DeepHMC qui permet de remplacer le calcul numĂ©rique des gradients par une approximation analytique un millier de fois plus rapide. Pour ce faire DeepHMC utilise un rĂ©seau de neurones profond qui, aprĂšs avoir Ă©tĂ© entraĂźnĂ© sur un ensemble de gradients numĂ©riques initialement calculĂ©s, est capable de prĂ©dire les gradients en des points de l’espace des paramĂštres encore inexplorĂ©s. Notre algorithme a Ă©tĂ© calibrĂ© et testĂ© avec succĂšs sur le signal GW170817 dans un modĂšle Ă  12 paramĂštres qui inclut les composantes axiales des spins des Ă©toiles Ă  neutrons ainsi que leur paramĂštre de dĂ©formation. Une comparaison de DeepHMC avec l’algorithme MCMC de la collaboration LIGO-Virgo montre que nous obtenons les mĂȘmes estimations de paramĂštres maisen un peu moins de trois jours, ce qui correspond Ă  un facteur d’accĂ©lĂ©ration d’environ 80 en temps CPU. TestĂ© avec succĂšs sur le signal GW170817, il faudra encore confirmer les performances de DeepHMC sur un panel plus large de signaux gravitationnels avant de pouvoir l’utiliser en complĂ©ment des algorithmes actuels. Toutefois nos travaux dĂ©montrent que DeepHMC s’avĂšre trĂšs prometteur pour rĂ©pondre aux frĂ©quences croissantes de dĂ©tection, ce qui permettra une analyse fiable et rapide des futurs signaux pour exploiter pleinement tout le potentiel de l’astronomie gravitationnelle

    DeepHMC : un algorithme Hamiltonian Monte Carlo utilisant un rĂ©seau de neurones profond pour l’infĂ©rence bayesienne des sources binaires compactes d’ondes gravitationnelles

    No full text
    The first direct detection of gravitational waves by the LIGO interferometers in 2015, originating from a compact binary system of black holes, opened the path of gravitational wave astronomy. It was followed by numerous detections, in particular two years later the merger of two neutron stars (a BNS system), named GW170817, which allowed its electromagnetic counterpart observation on a wide spectrum. The many implications of these observations, in fields as diverse as cosmology, ultra-dense matter or modified gravity theories, opened a new era in multi-messenger astronomy and confirmed the importance of gravitational wave astronomy. To estimate the most likely values of the parameters defining the source of the wave (e.g. component masses, distance, angles in the sky) and the uncertainties surrounding our measurement, the LIGO-Virgo collaboration uses Bayesian inference of the posterior probability distribution of the parameters. At the moment algorithms such as Markov Chain Monte Carlo (MCMC) allow this inference by random walking in parameter space to sample the posterior distribution. However these algorithms require from weeks to months to converge when analyzing long duration signals, typically BNSs such as GW170817. As detectors are being improved, the rate of detections and duration of exploitable signal increase which create an important tension with the time required to perform each analysis. The next observation run indeed foresees as many as 70 BNSs over a year. To answer this challenge, we propose in this thesis a different algorithm, the Hamiltonian Monte Carlo (HMC), which replaces the random walk behaviour inherent to standard MCMCs by Hamiltonian trajectories which use the gradient of the posterior distribution to sample it efficiently. As no closed form solution exist to compute these gradient analytically at each step of a trajectory, the latter must be derived numerically which is computationally too expensive for the HMC to be competitive. To circumvent this, we have developed the algorithm DeepHMC which replaces numerical gradients with a deep neural network approximation a thousand times faster to compute. After training the network on a pre-generated set of numerical gradients, the neural network is able to predict accurately the gradient values at new positions in parameter space. Our algorithm was successfully tested on GW170817 in a 12 dimensional analysis were alignedspins and tidal deformabilities were included. We then performed an apples-to-apples comparison with the official MCMC algorithm of the collaboration and proved we obtain the same statistical estimates of the parameters in only about three days which translates into a factor 80 speed-up in CPU time. While successful on GW170817, DeepHMC’s performances will need to be tested on a larger set of signals before it might be used by the collaboration. Nonetheless, our results demonstrate that DeepHMC appears as a promising answer to the increasing rate of detections and signal durations. It would allow an accurate and fast inference of future gravitational wave signals to exploit fully the scientific potential offered by gravitational wave astronomy.En septembre 2015 a eu lieu la premiĂšre dĂ©tection directe d’une onde gravitationnelle par les interfĂ©romĂštres LIGO, mettant en Ă©vidence la coalescence d’un systĂšme binaire compact composĂ© de deux trous noirs et ouvrant ainsi la voie de l’astronomie gravitationnelle. S’ensuivirent de nombreuses dĂ©tections, notamment celle, deux ans plus tard, de la fusion de deux Ă©toiles Ă  neutrons(systĂšme dit BNS), nommĂ©e GW170817, qui a permis d’observer sa contre-partie Ă©lectromagnĂ©tique dans une large gamme spectrale. Les multiples implications de ces observations dans des domaines aussi divers que la cosmologie, la matiĂšre ultra-dense ou les thĂ©ories de gravitĂ© modifiĂ©e ont ouvert une nouvelle Ăšre dans l’astronomie multi-messager et confirmĂ© l’essor de l’astronomie gravitationnelle. L’estimation des valeurs les plus probables des paramĂštres qui dĂ©finissent la source de l’onde (e.g. masses des deux composants, distance, angles dans le ciel) et des incertitudes entourant notre mesure est effectuĂ©e par infĂ©rence bayesienne de la distribution postĂ©rieure en probabilitĂ© des paramĂštres. À l’heure actuelle, des algorithmes de type Markov Chain Monte Carlo (MCMC) permettent ce travail en utilisant une marche alĂ©atoire dans l’espace des paramĂštres qui Ă©chantillonne adĂ©quatement la distribution postĂ©rieure. Cependant ces algorithmes nĂ©cessitent plusieurs semaines (mois) pour converger lorsqu’ils analysent des signaux gravitationnels de longue durĂ©e, typiquement des BNSs comme GW170817. À mesure que les dĂ©tecteurs sont amĂ©liorĂ©s, non seulement la frĂ©quences de dĂ©tection augmente mais les signaux sont Ă©galement observĂ©s sur des durĂ©es plus longues ce qui crĂ©e une tension croissante au vue de l’important temps de calcul nĂ©cessaire Ă  l’estimation de leur paramĂštres. La prochaine campagne d’observation prĂ©voie en effet jusqu’à 70 BNSs dĂ©tectĂ©s sur une annĂ©e. Pour rĂ©pondre Ă  cette problĂ©matique, nous proposons dans cette thĂšse un algorithme alternatif, le Hamiltonian Monte Carlo (HMC), qui remplace la marche alĂ©atoire des algorithmes MCMC classiques par des trajectoires hamiltoniennes qui utilisent le gradient de la distribution pour l’échantillonner efficacement. N’existant pas de forme analytique permettant un calcul rapide des gradients en chaque point des trajectoires, ces derniers doivent ĂȘtre calculĂ©s numĂ©riquement ce qui est trĂšs coĂ»teux en ressources informatiques, et, dans ces conditions, le HMC n’apparaĂźt pas plus compĂ©titif que ses homologues. Pour surmonter cet obstacle, nous avons dĂ©veloppĂ© l’algorithme DeepHMC qui permet de remplacer le calcul numĂ©rique des gradients par une approximation analytique un millier de fois plus rapide. Pour ce faire DeepHMC utilise un rĂ©seau de neurones profond qui, aprĂšs avoir Ă©tĂ© entraĂźnĂ© sur un ensemble de gradients numĂ©riques initialement calculĂ©s, est capable de prĂ©dire les gradients en des points de l’espace des paramĂštres encore inexplorĂ©s. Notre algorithme a Ă©tĂ© calibrĂ© et testĂ© avec succĂšs sur le signal GW170817 dans un modĂšle Ă  12 paramĂštres qui inclut les composantes axiales des spins des Ă©toiles Ă  neutrons ainsi que leur paramĂštre de dĂ©formation. Une comparaison de DeepHMC avec l’algorithme MCMC de la collaboration LIGO-Virgo montre que nous obtenons les mĂȘmes estimations de paramĂštres maisen un peu moins de trois jours, ce qui correspond Ă  un facteur d’accĂ©lĂ©ration d’environ 80 en temps CPU. TestĂ© avec succĂšs sur le signal GW170817, il faudra encore confirmer les performances de DeepHMC sur un panel plus large de signaux gravitationnels avant de pouvoir l’utiliser en complĂ©ment des algorithmes actuels. Toutefois nos travaux dĂ©montrent que DeepHMC s’avĂšre trĂšs prometteur pour rĂ©pondre aux frĂ©quences croissantes de dĂ©tection, ce qui permettra une analyse fiable et rapide des futurs signaux pour exploiter pleinement tout le potentiel de l’astronomie gravitationnelle

    DeepHMC : un algorithme Hamiltonian Monte Carlo utilisant un rĂ©seau de neurones profond pour l’infĂ©rence bayesienne des sources binaires compactes d’ondes gravitationnelles

    No full text
    En septembre 2015 a eu lieu la premiĂšre dĂ©tection directe d’une onde gravitationnelle par les interfĂ©romĂštres LIGO, mettant en Ă©vidence la coalescence d’un systĂšme binaire compact composĂ© de deux trous noirs et ouvrant ainsi la voie de l’astronomie gravitationnelle. S’ensuivirent de nombreuses dĂ©tections, notamment celle, deux ans plus tard, de la fusion de deux Ă©toiles Ă  neutrons(systĂšme dit BNS), nommĂ©e GW170817, qui a permis d’observer sa contre-partie Ă©lectromagnĂ©tique dans une large gamme spectrale. Les multiples implications de ces observations dans des domaines aussi divers que la cosmologie, la matiĂšre ultra-dense ou les thĂ©ories de gravitĂ© modifiĂ©e ont ouvert une nouvelle Ăšre dans l’astronomie multi-messager et confirmĂ© l’essor de l’astronomie gravitationnelle. L’estimation des valeurs les plus probables des paramĂštres qui dĂ©finissent la source de l’onde (e.g. masses des deux composants, distance, angles dans le ciel) et des incertitudes entourant notre mesure est effectuĂ©e par infĂ©rence bayesienne de la distribution postĂ©rieure en probabilitĂ© des paramĂštres. À l’heure actuelle, des algorithmes de type Markov Chain Monte Carlo (MCMC) permettent ce travail en utilisant une marche alĂ©atoire dans l’espace des paramĂštres qui Ă©chantillonne adĂ©quatement la distribution postĂ©rieure. Cependant ces algorithmes nĂ©cessitent plusieurs semaines (mois) pour converger lorsqu’ils analysent des signaux gravitationnels de longue durĂ©e, typiquement des BNSs comme GW170817. À mesure que les dĂ©tecteurs sont amĂ©liorĂ©s, non seulement la frĂ©quences de dĂ©tection augmente mais les signaux sont Ă©galement observĂ©s sur des durĂ©es plus longues ce qui crĂ©e une tension croissante au vue de l’important temps de calcul nĂ©cessaire Ă  l’estimation de leur paramĂštres. La prochaine campagne d’observation prĂ©voie en effet jusqu’à 70 BNSs dĂ©tectĂ©s sur une annĂ©e. Pour rĂ©pondre Ă  cette problĂ©matique, nous proposons dans cette thĂšse un algorithme alternatif, le Hamiltonian Monte Carlo (HMC), qui remplace la marche alĂ©atoire des algorithmes MCMC classiques par des trajectoires hamiltoniennes qui utilisent le gradient de la distribution pour l’échantillonner efficacement. N’existant pas de forme analytique permettant un calcul rapide des gradients en chaque point des trajectoires, ces derniers doivent ĂȘtre calculĂ©s numĂ©riquement ce qui est trĂšs coĂ»teux en ressources informatiques, et, dans ces conditions, le HMC n’apparaĂźt pas plus compĂ©titif que ses homologues. Pour surmonter cet obstacle, nous avons dĂ©veloppĂ© l’algorithme DeepHMC qui permet de remplacer le calcul numĂ©rique des gradients par une approximation analytique un millier de fois plus rapide. Pour ce faire DeepHMC utilise un rĂ©seau de neurones profond qui, aprĂšs avoir Ă©tĂ© entraĂźnĂ© sur un ensemble de gradients numĂ©riques initialement calculĂ©s, est capable de prĂ©dire les gradients en des points de l’espace des paramĂštres encore inexplorĂ©s. Notre algorithme a Ă©tĂ© calibrĂ© et testĂ© avec succĂšs sur le signal GW170817 dans un modĂšle Ă  12 paramĂštres qui inclut les composantes axiales des spins des Ă©toiles Ă  neutrons ainsi que leur paramĂštre de dĂ©formation. Une comparaison de DeepHMC avec l’algorithme MCMC de la collaboration LIGO-Virgo montre que nous obtenons les mĂȘmes estimations de paramĂštres maisen un peu moins de trois jours, ce qui correspond Ă  un facteur d’accĂ©lĂ©ration d’environ 80 en temps CPU. TestĂ© avec succĂšs sur le signal GW170817, il faudra encore confirmer les performances de DeepHMC sur un panel plus large de signaux gravitationnels avant de pouvoir l’utiliser en complĂ©ment des algorithmes actuels. Toutefois nos travaux dĂ©montrent que DeepHMC s’avĂšre trĂšs prometteur pour rĂ©pondre aux frĂ©quences croissantes de dĂ©tection, ce qui permettra une analyse fiable et rapide des futurs signaux pour exploiter pleinement tout le potentiel de l’astronomie gravitationnelle.The first direct detection of gravitational waves by the LIGO interferometers in 2015, originating from a compact binary system of black holes, opened the path of gravitational wave astronomy. It was followed by numerous detections, in particular two years later the merger of two neutron stars (a BNS system), named GW170817, which allowed its electromagnetic counterpart observation on a wide spectrum. The many implications of these observations, in fields as diverse as cosmology, ultra-dense matter or modified gravity theories, opened a new era in multi-messenger astronomy and confirmed the importance of gravitational wave astronomy. To estimate the most likely values of the parameters defining the source of the wave (e.g. component masses, distance, angles in the sky) and the uncertainties surrounding our measurement, the LIGO-Virgo collaboration uses Bayesian inference of the posterior probability distribution of the parameters. At the moment algorithms such as Markov Chain Monte Carlo (MCMC) allow this inference by random walking in parameter space to sample the posterior distribution. However these algorithms require from weeks to months to converge when analyzing long duration signals, typically BNSs such as GW170817. As detectors are being improved, the rate of detections and duration of exploitable signal increase which create an important tension with the time required to perform each analysis. The next observation run indeed foresees as many as 70 BNSs over a year. To answer this challenge, we propose in this thesis a different algorithm, the Hamiltonian Monte Carlo (HMC), which replaces the random walk behaviour inherent to standard MCMCs by Hamiltonian trajectories which use the gradient of the posterior distribution to sample it efficiently. As no closed form solution exist to compute these gradient analytically at each step of a trajectory, the latter must be derived numerically which is computationally too expensive for the HMC to be competitive. To circumvent this, we have developed the algorithm DeepHMC which replaces numerical gradients with a deep neural network approximation a thousand times faster to compute. After training the network on a pre-generated set of numerical gradients, the neural network is able to predict accurately the gradient values at new positions in parameter space. Our algorithm was successfully tested on GW170817 in a 12 dimensional analysis were alignedspins and tidal deformabilities were included. We then performed an apples-to-apples comparison with the official MCMC algorithm of the collaboration and proved we obtain the same statistical estimates of the parameters in only about three days which translates into a factor 80 speed-up in CPU time. While successful on GW170817, DeepHMC’s performances will need to be tested on a larger set of signals before it might be used by the collaboration. Nonetheless, our results demonstrate that DeepHMC appears as a promising answer to the increasing rate of detections and signal durations. It would allow an accurate and fast inference of future gravitational wave signals to exploit fully the scientific potential offered by gravitational wave astronomy

    DeepHMC : un algorithme Hamiltonian Monte Carlo utilisant un rĂ©seau de neurones profond pour l’infĂ©rence bayesienne des sources binaires compactes d’ondes gravitationnelles

    No full text
    The first direct detection of gravitational waves by the LIGO interferometers in 2015, originating from a compact binary system of black holes, opened the path of gravitational wave astronomy. It was followed by numerous detections, in particular two years later the merger of two neutron stars (a BNS system), named GW170817, which allowed its electromagnetic counterpart observation on a wide spectrum. The many implications of these observations, in fields as diverse as cosmology, ultra-dense matter or modified gravity theories, opened a new era in multi-messenger astronomy and confirmed the importance of gravitational wave astronomy. To estimate the most likely values of the parameters defining the source of the wave (e.g. component masses, distance, angles in the sky) and the uncertainties surrounding our measurement, the LIGO-Virgo collaboration uses Bayesian inference of the posterior probability distribution of the parameters. At the moment algorithms such as Markov Chain Monte Carlo (MCMC) allow this inference by random walking in parameter space to sample the posterior distribution. However these algorithms require from weeks to months to converge when analyzing long duration signals, typically BNSs such as GW170817. As detectors are being improved, the rate of detections and duration of exploitable signal increase which create an important tension with the time required to perform each analysis. The next observation run indeed foresees as many as 70 BNSs over a year. To answer this challenge, we propose in this thesis a different algorithm, the Hamiltonian Monte Carlo (HMC), which replaces the random walk behaviour inherent to standard MCMCs by Hamiltonian trajectories which use the gradient of the posterior distribution to sample it efficiently. As no closed form solution exist to compute these gradient analytically at each step of a trajectory, the latter must be derived numerically which is computationally too expensive for the HMC to be competitive. To circumvent this, we have developed the algorithm DeepHMC which replaces numerical gradients with a deep neural network approximation a thousand times faster to compute. After training the network on a pre-generated set of numerical gradients, the neural network is able to predict accurately the gradient values at new positions in parameter space. Our algorithm was successfully tested on GW170817 in a 12 dimensional analysis were alignedspins and tidal deformabilities were included. We then performed an apples-to-apples comparison with the official MCMC algorithm of the collaboration and proved we obtain the same statistical estimates of the parameters in only about three days which translates into a factor 80 speed-up in CPU time. While successful on GW170817, DeepHMC’s performances will need to be tested on a larger set of signals before it might be used by the collaboration. Nonetheless, our results demonstrate that DeepHMC appears as a promising answer to the increasing rate of detections and signal durations. It would allow an accurate and fast inference of future gravitational wave signals to exploit fully the scientific potential offered by gravitational wave astronomy.En septembre 2015 a eu lieu la premiĂšre dĂ©tection directe d’une onde gravitationnelle par les interfĂ©romĂštres LIGO, mettant en Ă©vidence la coalescence d’un systĂšme binaire compact composĂ© de deux trous noirs et ouvrant ainsi la voie de l’astronomie gravitationnelle. S’ensuivirent de nombreuses dĂ©tections, notamment celle, deux ans plus tard, de la fusion de deux Ă©toiles Ă  neutrons(systĂšme dit BNS), nommĂ©e GW170817, qui a permis d’observer sa contre-partie Ă©lectromagnĂ©tique dans une large gamme spectrale. Les multiples implications de ces observations dans des domaines aussi divers que la cosmologie, la matiĂšre ultra-dense ou les thĂ©ories de gravitĂ© modifiĂ©e ont ouvert une nouvelle Ăšre dans l’astronomie multi-messager et confirmĂ© l’essor de l’astronomie gravitationnelle. L’estimation des valeurs les plus probables des paramĂštres qui dĂ©finissent la source de l’onde (e.g. masses des deux composants, distance, angles dans le ciel) et des incertitudes entourant notre mesure est effectuĂ©e par infĂ©rence bayesienne de la distribution postĂ©rieure en probabilitĂ© des paramĂštres. À l’heure actuelle, des algorithmes de type Markov Chain Monte Carlo (MCMC) permettent ce travail en utilisant une marche alĂ©atoire dans l’espace des paramĂštres qui Ă©chantillonne adĂ©quatement la distribution postĂ©rieure. Cependant ces algorithmes nĂ©cessitent plusieurs semaines (mois) pour converger lorsqu’ils analysent des signaux gravitationnels de longue durĂ©e, typiquement des BNSs comme GW170817. À mesure que les dĂ©tecteurs sont amĂ©liorĂ©s, non seulement la frĂ©quences de dĂ©tection augmente mais les signaux sont Ă©galement observĂ©s sur des durĂ©es plus longues ce qui crĂ©e une tension croissante au vue de l’important temps de calcul nĂ©cessaire Ă  l’estimation de leur paramĂštres. La prochaine campagne d’observation prĂ©voie en effet jusqu’à 70 BNSs dĂ©tectĂ©s sur une annĂ©e. Pour rĂ©pondre Ă  cette problĂ©matique, nous proposons dans cette thĂšse un algorithme alternatif, le Hamiltonian Monte Carlo (HMC), qui remplace la marche alĂ©atoire des algorithmes MCMC classiques par des trajectoires hamiltoniennes qui utilisent le gradient de la distribution pour l’échantillonner efficacement. N’existant pas de forme analytique permettant un calcul rapide des gradients en chaque point des trajectoires, ces derniers doivent ĂȘtre calculĂ©s numĂ©riquement ce qui est trĂšs coĂ»teux en ressources informatiques, et, dans ces conditions, le HMC n’apparaĂźt pas plus compĂ©titif que ses homologues. Pour surmonter cet obstacle, nous avons dĂ©veloppĂ© l’algorithme DeepHMC qui permet de remplacer le calcul numĂ©rique des gradients par une approximation analytique un millier de fois plus rapide. Pour ce faire DeepHMC utilise un rĂ©seau de neurones profond qui, aprĂšs avoir Ă©tĂ© entraĂźnĂ© sur un ensemble de gradients numĂ©riques initialement calculĂ©s, est capable de prĂ©dire les gradients en des points de l’espace des paramĂštres encore inexplorĂ©s. Notre algorithme a Ă©tĂ© calibrĂ© et testĂ© avec succĂšs sur le signal GW170817 dans un modĂšle Ă  12 paramĂštres qui inclut les composantes axiales des spins des Ă©toiles Ă  neutrons ainsi que leur paramĂštre de dĂ©formation. Une comparaison de DeepHMC avec l’algorithme MCMC de la collaboration LIGO-Virgo montre que nous obtenons les mĂȘmes estimations de paramĂštres maisen un peu moins de trois jours, ce qui correspond Ă  un facteur d’accĂ©lĂ©ration d’environ 80 en temps CPU. TestĂ© avec succĂšs sur le signal GW170817, il faudra encore confirmer les performances de DeepHMC sur un panel plus large de signaux gravitationnels avant de pouvoir l’utiliser en complĂ©ment des algorithmes actuels. Toutefois nos travaux dĂ©montrent que DeepHMC s’avĂšre trĂšs prometteur pour rĂ©pondre aux frĂ©quences croissantes de dĂ©tection, ce qui permettra une analyse fiable et rapide des futurs signaux pour exploiter pleinement tout le potentiel de l’astronomie gravitationnelle

    The population of merging compact binaries inferred using gravitational waves through GWTC-3

    No full text
    v2: minor edits, most to Table 1 and caption; v3: rerun with public data; Data release: https://zenodo.org/record/5655785; v4: update Fig 14We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 Gpc−3yr−1\rm{Gpc^{-3} yr^{-1}} and 1700 Gpc−3yr−1\rm{Gpc^{-3} yr^{-1}} and the NSBH merger rate to be between 7.8 Gpc−3 yr−1\rm{Gpc^{-3}\, yr^{-1}} and 140 Gpc−3yr−1\rm{Gpc^{-3} yr^{-1}} , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 Gpc−3 yr−1\rm{Gpc^{-3}\, yr^{-1}} and 44 Gpc−3 yr−1\rm{Gpc^{-3}\, yr^{-1}} at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from 1.2−0.2+0.1M⊙1.2^{+0.1}_{-0.2} M_\odot to 2.0−0.3+0.3M⊙2.0^{+0.3}_{-0.3} M_\odot. We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 M⊙M_\odot. We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above ∌60M⊙\sim 60 M_\odot. The rate of BBH mergers is observed to increase with redshift at a rate proportional to (1+z)Îș(1+z)^{\kappa} with Îș=2.9−1.8+1.7\kappa = 2.9^{+1.7}_{-1.8} for zâ‰Č1z\lesssim 1. Observed black hole spins are small, with half of spin magnitudes below χi≃0.25\chi_i \simeq 0.25. We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio

    The population of merging compact binaries inferred using gravitational waves through GWTC-3

    No full text
    v2: minor edits, most to Table 1 and caption; v3: rerun with public data; Data release: https://zenodo.org/record/5655785; v4: update Fig 14We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 Gpc−3yr−1\rm{Gpc^{-3} yr^{-1}} and 1700 Gpc−3yr−1\rm{Gpc^{-3} yr^{-1}} and the NSBH merger rate to be between 7.8 Gpc−3 yr−1\rm{Gpc^{-3}\, yr^{-1}} and 140 Gpc−3yr−1\rm{Gpc^{-3} yr^{-1}} , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 Gpc−3 yr−1\rm{Gpc^{-3}\, yr^{-1}} and 44 Gpc−3 yr−1\rm{Gpc^{-3}\, yr^{-1}} at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from 1.2−0.2+0.1M⊙1.2^{+0.1}_{-0.2} M_\odot to 2.0−0.3+0.3M⊙2.0^{+0.3}_{-0.3} M_\odot. We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 M⊙M_\odot. We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above ∌60M⊙\sim 60 M_\odot. The rate of BBH mergers is observed to increase with redshift at a rate proportional to (1+z)Îș(1+z)^{\kappa} with Îș=2.9−1.8+1.7\kappa = 2.9^{+1.7}_{-1.8} for zâ‰Č1z\lesssim 1. Observed black hole spins are small, with half of spin magnitudes below χi≃0.25\chi_i \simeq 0.25. We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio

    The population of merging compact binaries inferred using gravitational waves through GWTC-3

    No full text
    v2: minor edits, most to Table 1 and caption; v3: rerun with public data; Data release: https://zenodo.org/record/5655785; v4: update Fig 14We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 Gpc−3yr−1\rm{Gpc^{-3} yr^{-1}} and 1700 Gpc−3yr−1\rm{Gpc^{-3} yr^{-1}} and the NSBH merger rate to be between 7.8 Gpc−3 yr−1\rm{Gpc^{-3}\, yr^{-1}} and 140 Gpc−3yr−1\rm{Gpc^{-3} yr^{-1}} , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 Gpc−3 yr−1\rm{Gpc^{-3}\, yr^{-1}} and 44 Gpc−3 yr−1\rm{Gpc^{-3}\, yr^{-1}} at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from 1.2−0.2+0.1M⊙1.2^{+0.1}_{-0.2} M_\odot to 2.0−0.3+0.3M⊙2.0^{+0.3}_{-0.3} M_\odot. We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 M⊙M_\odot. We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above ∌60M⊙\sim 60 M_\odot. The rate of BBH mergers is observed to increase with redshift at a rate proportional to (1+z)Îș(1+z)^{\kappa} with Îș=2.9−1.8+1.7\kappa = 2.9^{+1.7}_{-1.8} for zâ‰Č1z\lesssim 1. Observed black hole spins are small, with half of spin magnitudes below χi≃0.25\chi_i \simeq 0.25. We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio

    The population of merging compact binaries inferred using gravitational waves through GWTC-3

    No full text
    v2: minor edits, most to Table 1 and caption; v3: rerun with public data; Data release: https://zenodo.org/record/5655785; v4: update Fig 14We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 Gpc−3yr−1\rm{Gpc^{-3} yr^{-1}} and 1700 Gpc−3yr−1\rm{Gpc^{-3} yr^{-1}} and the NSBH merger rate to be between 7.8 Gpc−3 yr−1\rm{Gpc^{-3}\, yr^{-1}} and 140 Gpc−3yr−1\rm{Gpc^{-3} yr^{-1}} , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 Gpc−3 yr−1\rm{Gpc^{-3}\, yr^{-1}} and 44 Gpc−3 yr−1\rm{Gpc^{-3}\, yr^{-1}} at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from 1.2−0.2+0.1M⊙1.2^{+0.1}_{-0.2} M_\odot to 2.0−0.3+0.3M⊙2.0^{+0.3}_{-0.3} M_\odot. We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 M⊙M_\odot. We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above ∌60M⊙\sim 60 M_\odot. The rate of BBH mergers is observed to increase with redshift at a rate proportional to (1+z)Îș(1+z)^{\kappa} with Îș=2.9−1.8+1.7\kappa = 2.9^{+1.7}_{-1.8} for zâ‰Č1z\lesssim 1. Observed black hole spins are small, with half of spin magnitudes below χi≃0.25\chi_i \simeq 0.25. We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio
    corecore