8,286 research outputs found
COCOA: CMS Object-oriented Code for Optical Alignment
COCOA is a C++ software that is able to reconstruct the positions, angular orientations, and internal optical parameters of any optical system described by a seamless combination of many different types of optical objects. The program also handles the propagation of uncertainties, which makes it very useful to simulate the system in the design phase. The software is currently in use by the different optical alignment systems of CMS and is integrated in the CMS framework so that it can read the geometry description from simple text files or the CMS XML format, and the input and output data from text files, ROOT trees, or an Oracle or MySQL database
A Clinically Relevant Relevant Post-Traumatic Osteoarthritis Mouse Model
Osteoarthritis affects 13-20% of Canadians with the majority being under 65years of age. Post-traumatic osteoarthritis (PTOA) is of great concern in young athletes following knee injury. Current research attempts at modeling the disease fall short. This study aimed to incorporate two important aspects of injury, the nature of the injury and the post-injury standard of care in humans, to a model of PTOA in mice. The study validated a non-invasive protocol to elicit an anterior cruciate ligament (ACL) injury at varying loading speeds addressing the closed capsule nature of an ACL injury that occurs in humans. Secondly, we proposed a stabilization surgery implemented after an ACL transection event addressing the post-injury standard of care often ignored in animal models. This procedure provided protection in mice at ten weeks following the injury. Future research should incorporate the two protocols and create a better model that is more clinically relevant to the field PTOA
Structure and permeability of ion-channels by integrated AFM and waveguide TIRF microscopy.
Membrane ion channels regulate key cellular functions and their activity is dependent on their 3D structure. Atomic force microscopy (AFM) images 3D structure of membrane channels placed on a solid substrate. Solid substrate prevents molecular transport through ion channels thus hindering any direct structure-function relationship analysis. Here we designed a ~70 nm nanopore to suspend a membrane, allowing fluidic access to both sides. We used these nanopores with AFM and total internal reflection fluorescence microscopy (TIRFM) for high resolution imaging and molecular transport measurement. Significantly, membranes over the nanopore were stable for repeated AFM imaging. We studied structure-activity relationship of gap junction hemichannels reconstituted in lipid bilayers. Individual hemichannels in the membrane overlying the nanopore were resolved and transport of hemichannel-permeant LY dye was visualized when the hemichannel was opened by lowering calcium in the medium. This integrated technique will allow direct structure-permeability relationship of many ion channels and receptors
Sancho Gil : (novela fantástica)
Copia digital. Valladolid : Junta de Castilla y León. ConsejerÃa de Cultura y Turismo, 2009-201
Jets and Outflows From Star to Cloud: Observations Confront Theory
In this review we focus on the role jets and outflows play in the star and
planet formation process. Our essential question can be posed as follows: are
jets/outflows merely an epiphenomenon associated with star formation or do they
play an important role in mediating the physics of assembling stars both
individually and globally? We address this question by reviewing the current
state of observations and their key points of contact with theory. Our review
of jet/outflow phenomena is organized into three length-scale domains: Source
and Disk Scales ( au) where the connection with protostellar and disk
evolution theories is paramount; Envelope Scales ( au) where the
chemistry and propagation shed further light on the jet launching process, its
variability and its impact on the infalling envelope; Parent Cloud Scales
( au) where global momentum injection into cluster/cloud
environments become relevant. Issues of feedback are of particular importance
on the smallest scales where planet formation regions in a disk may be impacted
by the presence of disk winds, irradiation by jet shocks or shielding by the
winds. Feedback on envelope scales may determine the final stellar mass
(core-to-star efficiency) and envelope dissipation. Feedback also plays an
important role on the larger scales with outflows contributing to turbulent
support within clusters including alteration of cluster star formation
efficiencies (feedback on larger scales currently appears unlikely). A
particularly novel dimension of our review is that we consider results on jet
dynamics from the emerging field of High Energy Density Laboratory Astrophysics
(HEDLA). HEDLA is now providing direct insights into the 3-D dynamics of fully
magnetized, hypersonic, radiative outflows.Comment: Accepted for publication as a chapter in Protostars and Planets VI,
University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C.
Dullemond, Th. Hennin
Replicase mediated resistance against Potato Leafroll Virus in potato Desirée plants.
Potato leafroll virus (PLRV) is a major menace for the potato production all over the world. PLRV is transmitted by aphids, and until now, the only strategy available to control this pest has been to use large amounts of insecticides. Transgenic approaches involving the expression of viral replicases are being developed to provide protection for plants against viral diseases. The purpose of this study was to compare the protection afforded by the differential expression of PLRV replicase transgene in potato plants cv. Desirée. Plants were genetically modified to express the complete sense PLRV replicase gene. Two constructions were used, one containing the constitutive 35SCaMV promoter and the other the phloem-specific RolA promoter from Agrobacterium rhizogenes. Transgenic plants were infected with PLRV in vitro, using infested aphids. In plants in which 35SCaMV controlled the expression of the PLRV replicase gene, signs of infection were initially detected, although most plants later developed a recovery phenotype showing undetectable virus levels 40 days after infection. In turn, those plants with the RolA promoter displayed an initial resistance that was later overcome. Different molecular mechanisms are likely to participate in the response to PLRV infection of these two types of transgenic plants
Unification of the conditional probability and semiclassical interpretations for the problem of time in quantum theory
We show that the time-dependent Schr\"odinger equation (TDSE) is the
phenomenological dynamical law of evolution unraveled in the classical limit
from a timeless formulation in terms of probability amplitudes conditioned by
the values of suitably chosen internal clock variables, thereby unifying the
conditional probability interpretation (CPI) and the semiclassical approach for
the problem of time in quantum theory. Our formalism stems from an exact
factorization of the Hamiltonian eigenfunction of the clock plus system
composite, where the clock and system factors play the role of marginal and
conditional probability amplitudes, respectively. Application of the Variation
Principle leads to a pair of exact coupled pseudoeigenvalue equations for these
amplitudes, whose solution requires an iterative self-consistent procedure. The
equation for the conditional amplitude constitutes an effective "equation of
motion" for the quantum state of the system with respect to the clock
variables. These coupled equations also provide a convenient framework for
treating the back-reaction of the system on the clock at various levels of
approximation. At the lowest level, when the WKB approximation for the marginal
amplitude is appropriate, in the classical limit of the clock variables the
TDSE for the system emerges as a matter of course from the conditional
equation. In this connection, we provide a discussion of the characteristics
required by physical systems to serve as good clocks. This development is seen
to be advantageous over the original CPI and semiclassical approach since it
maintains the essence of the conventional formalism of quantum mechanics,
admits a transparent interpretation, avoids the use of the Born-Oppenheimer
approximation, and resolves various objections raised about them.Comment: 10 pages. Typographical errors correcte
- …