199 research outputs found

    Correlation between brain functional connectivity and neurocognitive function in patients with left frontal glioma

    Get PDF
    The association between neurocognitive function (NCF) impairment and brain cortical functional connectivity in glioma patients remains unclear. The correlations between brain oscillatory activity or functional connectivity and NCF measured by the Wechsler Adult Intelligence Scale full-scale intelligence quotient scores (WAIS FSIQ), the Wechsler Memory Scale-revised general memory scores (WMS-R GM), and the Western aphasia battery aphasia quotient scores (WAB AQ) were evaluated in 18 patients with left frontal glioma using resting-state electroencephalography (EEG). Current source density (CSD) and lagged phase synchronization (LPS) were analyzed using exact low-resolution electromagnetic tomography (eLORETA). Although 2 and 2 patients scored in the borderline range of WAIS FSIQ and WMS-R GM, respectively, the mean WAIS FSIQ, WMS-R GM, and WAB AQ values of all patients were within normal limits, and none had aphasia. In the correlation analysis, lower WMS-R GM was associated with a higher LPS value between the right anterior prefrontal cortex and the left superior parietal lobule in the beta1 band (13-20 Hz, R = - 0.802, P = 0.012). These findings suggest that LPS evaluated by scalp EEG is associated with memory function in patients with left frontal glioma and mild NCF disorders

    Dopamine D_1 Receptors and Nonlinear Probability Weighting in Risky Choice

    Get PDF
    Misestimating risk could lead to disadvantaged choices such as initiation of drug use (or gambling) and transition to regular drug use (or gambling). Although the normative theory in decision-making under risks assumes that people typically take the probability-weighted expectation over possible utilities, experimental studies of choices among risks suggest that outcome probabilities are transformed nonlinearly into subjective decision weights by a nonlinear weighting function that overweights low probabilities and underweights high probabilities. Recent studies have revealed the neurocognitive mechanism of decision-making under risk. However, the role of modulatory neurotransmission in this process remains unclear. Using positron emission tomography, we directly investigated whether dopamine D_1 and D_2 receptors in the brain are associated with transformation of probabilities into decision weights in healthy volunteers. The binding of striatal D_1 receptors is negatively correlated with the degree of nonlinearity of weighting function. Individuals with lower striatal D_1 receptor density showed more pronounced overestimation of low probabilities and underestimation of high probabilities. This finding should contribute to a better understanding of the molecular mechanism of risky choice, and extreme or impaired decision-making observed in drug and gambling addiction

    KaPPA-View4: a metabolic pathway database for representation and analysis of correlation networks of gene co-expression and metabolite co-accumulation and omics data

    Get PDF
    Correlations of gene-to-gene co-expression and metabolite-to-metabolite co-accumulation calculated from large amounts of transcriptome and metabolome data are useful for uncovering unknown functions of genes, functional diversities of gene family members and regulatory mechanisms of metabolic pathway flows. Many databases and tools are available to interpret quantitative transcriptome and metabolome data, but there are only limited ones that connect correlation data to biological knowledge and can be utilized to find biological significance of it. We report here a new metabolic pathway database, KaPPA-View4 (http://kpv.kazusa.or.jp/kpv4/), which is able to overlay gene-to-gene and/or metabolite-to-metabolite relationships as curves on a metabolic pathway map, or on a combination of up to four maps. This representation would help to discover, for example, novel functions of a transcription factor that regulates genes on a metabolic pathway. Pathway maps of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and maps generated from their gene classifications are available at KaPPA-View4 KEGG version (http://kpv.kazusa.or.jp/kpv4-kegg/). At present, gene co-expression data from the databases ATTED-II, COXPRESdb, CoP and MiBASE for human, mouse, rat, Arabidopsis, rice, tomato and other plants are available

    The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies.

    Get PDF
    BACKGROUND: BioHackathon 2010 was the third in a series of meetings hosted by the Database Center for Life Sciences (DBCLS) in Tokyo, Japan. The overall goal of the BioHackathon series is to improve the quality and accessibility of life science research data on the Web by bringing together representatives from public databases, analytical tool providers, and cyber-infrastructure researchers to jointly tackle important challenges in the area of in silico biological research. RESULTS: The theme of BioHackathon 2010 was the 'Semantic Web', and all attendees gathered with the shared goal of producing Semantic Web data from their respective resources, and/or consuming or interacting those data using their tools and interfaces. We discussed on topics including guidelines for designing semantic data and interoperability of resources. We consequently developed tools and clients for analysis and visualization. CONCLUSION: We provide a meeting report from BioHackathon 2010, in which we describe the discussions, decisions, and breakthroughs made as we moved towards compliance with Semantic Web technologies - from source provider, through middleware, to the end-consumer.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    在来種ネズミモチと移入種トウネズミモチ(モクセイ科) の保全遺伝学的研究

    Get PDF
    Genetic introgression from introduced, non-native species into native populations is a growing challenge for biological conservation, and one that raises unique practical and ethical issues. Ligustrum lucidum is native to China, and cultivated or used in gardens in various areas in Japan. Recently, some studies reported that this species escaped from cultivated areas and was sympatric with L. japonicum. This indicates that L. japonicum faces the ecological and genetic risk of hybridization and introgression with non-native L. lucidum. Therefore, we examined whether hybridization between L. japonicum and the non-native L. lucidum has occurred in a coexisting population using phenological and molecular analyses. The phenological results indicate that there is very little overlap in the flowering times of the two species. Moreover, molecular analyses using PCR-RFLP of chloroplast and nuclear DNA sequences could not detect any hybridization or introgression of L. lucidum and L. japonicum in the population.移入種から在来種への遺伝子移入は生物学的保全のための懸念課題であり,実用的かつ倫理的な問題を提起している。中国原産のトウネズミモチ(Ligustrum lucidum)は日本の広い地域で園芸として栽植されているが逸出により分布を拡大しており,在来種のネズミモチ(L. japonicum)と同所的に生育していることが近年報告されている。このため,ネズミモチはトウネズミモチとの雑種形成や浸透交雑の生態学的リスクにさらされていると考えられる。そこで本研究では,在来種のネズミモチと移入種のトウネズミモチの間での雑種形成による遺伝的攪乱の有無を明らかにすることを目的として,開花期調査および分子遺伝学的調査を行った。開花期の調査結果より,両種の開花期がずれていることが明らかとなった。PCR-RFLP解析の結果,ネズミモチとトウネズミモチの間に交雑個体および浸透交雑個体を検出することはできなかったため,両種間での交雑は起こっていないと考えられる

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore