29 research outputs found

    A new and self-contained proof of Borwein's norm duality theorem

    Get PDF
    Borwein’s norm duality theorem establishes the equality between the outer (inner) norm of a sublinear mapping and the inner (outer) norm of its adjoint mappings. In this note we provide an extended version of this theorem with a new and self-contained proof relying only on the Hahn-Banach theorem. We also give examples showing that the assumptions of the theorem cannot be relaxed.Grant BES-2003-0188 from FPI Program of MEC (Spain)

    Globally convergent algorithms for finding zeros of duplomonotone mappings

    Get PDF
    We introduce a new class of mappings, called duplomonotone, which is strictly broader than the class of monotone mappings. We study some of the main properties of duplomonotone functions and provide various examples, including nonlinear duplomonotone functions arising from the study of systems of biochemical reactions. Finally, we present three variations of a derivative-free line search algorithm for finding zeros of systems of duplomonotone equations, and we prove their linear convergence to a zero of the function.This work was supported by the National Research Fund, Luxembourg, co-funded under the Marie Curie Actions of the European Commission (FP7-COFUND), and by the U.S. Department of Energy, Offices of Advanced Scientific Computing Research and the Biological and Environmental Research as part of the Scientific Discovery Through Advanced Computing program, grant #DE-SC0010429

    An enhanced formulation for solving graph coloring problems with the Douglas–Rachford algorithm

    Get PDF
    We study the behavior of the Douglas–Rachford algorithm on the graph vertex-coloring problem. Given a graph and a number of colors, the goal is to find a coloring of the vertices so that all adjacent vertex pairs have different colors. In spite of the combinatorial nature of this problem, the Douglas–Rachford algorithm was recently shown to be a successful heuristic for solving a wide variety of graph coloring instances, when the problem was cast as a feasibility problem on binary indicator variables. In this work we consider a different formulation, based on semidefinite programming. The much improved performance of the Douglas–Rachford algorithm, with this new approach, is demonstrated through various numerical experiments.F. J. Aragón Artacho and R. Campoy were partially supported by MICINN of Spain and ERDF of EU, Grants MTM2014-59179-C2-1-P and PGC2018-097960-B-C22. F. J. Aragón Artacho was supported by the Ramón y Cajal program by MINECO of Spain and ERDF of EU (RYC-2013-13327) and R. Campoy was supported by MINECO of Spain and ESF of EU (BES-2015-073360) under the program “Ayudas para contratos predoctorales para la formación de doctores 2015”

    Solving Graph Coloring Problems with the Douglas-Rachford Algorithm

    Get PDF
    We present the Douglas-Rachford algorithm as a successful heuristic for solving graph coloring problems. Given a set of colors, these types of problems consist in assigning a color to each node of a graph, in such a way that every pair of adjacent nodes are assigned with different colors. We formulate the graph coloring problem as an appropriate feasibility problem that can be effectively solved by the Douglas-Rachford algorithm, despite the nonconvexity arising from the combinatorial nature of the problem. Different modifications of the graph coloring problem and applications are also presented. The good performance of the method is shown in various computational experiments.F.J. Aragón and R. Campoy were partially supported by MINECO of Spain and ERDF of EU, grant MTM2014-59179-C2-1-P. F.J. Aragón was supported by the Ramón y Cajal program by MINECO of Spain and ERDF of EU (RYC-2013-13327) and R. Campoy was supported by MINECO of Spain and ESF of EU (BES-2015-073360) under the program “Ayudas para contratos predoctorales para la formación de doctores 2015”

    The Boosted DC Algorithm for Linearly Constrained DC Programming

    Get PDF
    The Boosted Difference of Convex functions Algorithm (BDCA) has been recently introduced to accelerate the performance of the classical Difference of Convex functions Algorithm (DCA). This acceleration is achieved thanks to an extrapolation step from the point computed by DCA via a line search procedure. In this work, we propose an extension of BDCA that can be applied to difference of convex functions programs with linear constraints, and prove that every cluster point of the sequence generated by this algorithm is a Karush–Kuhn–Tucker point of the problem if the feasible set has a Slater point. When the objective function is quadratic, we prove that any sequence generated by the algorithm is bounded and R-linearly (geometrically) convergent. Finally, we present some numerical experiments where we compare the performance of DCA and BDCA on some challenging problems: to test the copositivity of a given matrix, to solve one-norm and infinity-norm trust-region subproblems, and to solve piecewise quadratic problems with box constraints. Our numerical results demonstrate that this new extension of BDCA outperforms DCA.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. FJAA and RC were partially supported by the Ministry of Science, Innovation and Universities of Spain and the European Regional Development Fund (ERDF) of the European Commission (PGC2018-097960-B-C22), and by the Generalitat Valenciana (AICO/2021/165). PTV was supported by Vietnam Ministry of Education and Training Project hosting by the University of Technology and Education, Ho Chi Minh City Vietnam (2023-2024)

    Computing the Resolvent of the Sum of Maximally Monotone Operators with the Averaged Alternating Modified Reflections Algorithm

    Get PDF
    The averaged alternating modified reflections algorithm is a projection method for finding the closest point in the intersection of closed and convex sets to a given point in a Hilbert space. In this work, we generalize the scheme so that it can be used to compute the resolvent of the sum of two maximally monotone operators. This gives rise to a new splitting method, which is proved to be strongly convergent. A standard product space reformulation permits to apply the method for computing the resolvent of a finite sum of maximally monotone operators. Based on this, we propose two variants of such parallel splitting method.This work was partially supported by Ministerio de Economía, Industria y Competitividad (MINECO) of Spain and European Regional Development Fund (ERDF), grant MTM2014-59179-C2-1-P. FJAA was supported by the Ramón y Cajal program by MINECO and ERDF (RYC-2013-13327) and RC was supported by MINECO and European Social Fund (BES-2015-073360) under the program “Ayudas para contratos predoctorales para la formación de doctores 2015”

    Optimal rates of linear convergence of the averaged alternating modified reflections method for two subspaces

    Get PDF
    The averaged alternating modified reflections (AAMR) method is a projection algorithm for finding the closest point in the intersection of convex sets to any arbitrary point in a Hilbert space. This method can be seen as an adequate modification of the Douglas–Rachford method that yields a solution to the best approximation problem. In this paper, we consider the particular case of two subspaces in a Euclidean space. We obtain the rate of linear convergence of the AAMR method in terms of the Friedrichs angle between the subspaces and the parameters defining the scheme, by studying the linear convergence rates of the powers of matrices. We further optimize the value of these parameters in order to get the minimal convergence rate, which turns out to be better than the one of other projection methods. Finally, we provide some numerical experiments that demonstrate the theoretical results.This work was partially supported by Ministerio de Economía, Industria y Competitividad (MINECO) of Spain and European Regional Development Fund (ERDF), grant MTM2014-59179-C2-1-P. F.J. Aragón Artacho was supported by the Ramón y Cajal program by MINECO and ERDF (RYC-2013-13327) and R. Campoy was supported by MINECO and European Social Fund (BES-2015-073360) under the program “Ayudas para contratos predoctorales para la formación de doctores 2015.

    Computing the Resolvent of the Sum of Maximally Monotone Operators with the Averaged Alternating Modified Reflections Algorithm

    Get PDF
    The averaged alternating modified reflections algorithm is a projection method for finding the closest point in the intersection of closed and convex sets to a given point in a Hilbert space. In this work, we generalize the scheme so that it can be used to compute the resolvent of the sum of two maximally monotone operators. This gives rise to a new splitting method, which is proved to be strongly convergent. A standard product space reformulation permits to apply the method for computing the resolvent of a finite sum of maximally monotone operators. Based on this, we propose two variants of such parallel splitting method.This work was partially supported by Ministerio de Economía, Industria y Competitividad (MINECO) of Spain and European Regional Development Fund (ERDF), grant MTM2014-59179-C2-1-P. FJAA was supported by the Ramón y Cajal program by MINECO and ERDF (RYC-2013-13327) and RC was supported by MINECO and European Social Fund (BES-2015-073360) under the program “Ayudas para contratos predoctorales para la formación de doctores 2015”

    The Douglas–Rachford algorithm for convex and nonconvex feasibility problems

    Get PDF
    The Douglas–Rachford algorithm is an optimization method that can be used for solving feasibility problems. To apply the method, it is necessary that the problem at hand is prescribed in terms of constraint sets having efficiently computable nearest points. Although the convergence of the algorithm is guaranteed in the convex setting, the scheme has demonstrated to be a successful heuristic for solving combinatorial problems of different type. In this self-contained tutorial, we develop the convergence theory of projection algorithms within the framework of fixed point iterations, explain how to devise useful feasibility problem formulations, and demonstrate the application of the Douglas–Rachford method to said formulations. The paradigm is then illustrated on two concrete problems: a generalization of the “eight queens puzzle” known as the “(m, n)-queens problem”, and the problem of constructing a probability distribution with prescribed moments.FJAA and RC were partially supported by Ministerio de Economía, Industria y Competitividad (MINECO) and European Regional Development Fund (ERDF), grant MTM2014-59179-C2-1-P. FJAA was supported by the Ramón y Cajal program by MINECO and ERDF (RYC-2013-13327) and by the Ministerio de Ciencia, Innovación y Universidades and ERDF, grant PGC2018-097960-B-C22. RC was supported by MINECO and European Social Fund (BES-2015-073360) under the program “Ayudas para contratos predoctorales para la formación de doctores 2015”

    Accelerating the DC algorithm for smooth functions

    Get PDF
    We introduce two new algorithms to minimise smooth difference of convex (DC) functions that accelerate the convergence of the classical DC algorithm (DCA). We prove that the point computed by DCA can be used to define a descent direction for the objective function evaluated at this point. Our algorithms are based on a combination of DCA together with a line search step that uses this descent direction. Convergence of the algorithms is proved and the rate of convergence is analysed under the Łojasiewicz property of the objective function. We apply our algorithms to a class of smooth DC programs arising in the study of biochemical reaction networks, where the objective function is real analytic and thus satisfies the Łojasiewicz property. Numerical tests on various biochemical models clearly show that our algorithms outperform DCA, being on average more than four times faster in both computational time and the number of iterations. Numerical experiments show that the algorithms are globally convergent to a non-equilibrium steady state of various biochemical networks, with only chemically consistent restrictions on the network topology.F. J. Aragón Artacho was supported by MINECO of Spain and ERDF of EU, as part of the Ramón y Cajal program (RYC-2013-13327) and the Grant MTM2014-59179-C2-1-P. R. M. Fleming and P. T. Vuong were supported by the U.S. Department of Energy, Offices of Advanced Scientific Computing Research and the Biological and Environmental Research as part of the Scientific Discovery Through Advanced Computing program, Grant #DE-SC0010429
    corecore