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Abstract. Borwein’s norm duality theorem establishes the equality between the outer
(inner) norm of a sublinear mapping and the inner (outer) norm of its adjoint mappings.
In this note we provide an extended version of this theorem with a new and self-contained
proof relying only on the Hahn-Banach theorem. We also give examples showing that the
assumptions of the theorem cannot be relaxed.
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Borwein’s norm duality theorem was proved in [3] in a paper involving a general study
of convex processes. A revised version of it was published later in [6] with more details and
some applications. The proof of the theorem given in both papers is somewhat involved and
relying on other results scattered in the literature, such as a Lagrange multiplier theorem
given in [5, Theorem 3.1]. In view to the fundamental importance of this result in variational
analysis and beyond, we feel that the availability of a self-contained and detailed proof would
benefit everyone involved in research and teaching in this area. In this paper we provide
such a proof simultaneously extending the original version of the theorem.

For mappings acting in Euclidean spaces, two different proofs are provided in [4, Theorem
5.4.10] and [10, Theorem 11.29]. The first one explicitly uses the finite dimensions. The
second one is based on support functions and their properties. Because of the complexity of
the proof and the use of a number of other results all stated in finite dimensions, the author
is not in a position to determine whether the proof in [10] can be extended to infinite-
dimensional spaces. Here we present a proof in normed spaces the only prerequisite for
which is the Hahn-Banach theorem. The proof follows partially the original Borwein’s proof
in [3].

Throughout the paper X and Y are real linear normed spaces whose norms are both
denoted by ‖ · ‖. For a multivalued mapping acting from X into the subsets of Y , denoted
by F : X ⇒ Y , we define its graph and its domain, respectively, by

gphF = {(x, y) ∈ X × Y | y ∈ F (x)} and domF = {x ∈ X | F (x) 6= ∅},

and the associated inverse mapping by

F−1(y) = {x ∈ X | y ∈ F (x)}, for y ∈ Y.

A mapping F : X ⇒ Y is said to be positively homogeneous when 0 ∈ F (0) and F (λx) =
λF (x) for all λ > 0 and x ∈ X, or equivalently, when gphF is a cone in X ×Y . F is said to
be sublinear when it is positively homogeneous and, in addition, F (x) + F (x′) ⊂ F (x + x′)
for all x, x′ ∈ X; equivalently, when gphF is a convex cone in X × Y . A sublinear mapping
whose domain is the whole space X and which is single-valued on X is a linear function.
Sublinear mappings are introduced by R. T. Rockafellar in [8, 9] under the name convex
processes.

For any sublinear mapping F : X ⇒ Y , the outer norm ‖F‖+ and the inner norm ‖F‖−
are defined by

‖F‖+ = sup
x∈B

sup
y∈F (x)

‖y‖ and ‖F‖− = sup
x∈B

inf
y∈F (x)

‖y‖.

Here we follow the convention adopted in [10] setting infy∈A ‖y‖ =∞ and supy∈A ‖y‖ = −∞
if A = ∅. Another equivalent way to define these quantities (see [3] and [6]) is

‖F‖+ = inf{r > 0 | F (B) ⊂ rB} and ‖F‖− = inf{r > 0 | F (x) ∩ rB 6= ∅,∀x ∈ B}.

When domF = X and F is single-valued on X both norms agree. For F linear and
bounded, both norms reduce to the operator norm ‖F‖. Neither ‖F‖+ nor ‖F‖− satisfy the
conditions in the definition of a norm, since sublinear mappings do not form a vector space.

2



Since the infimum over a nonempty set is greater or equal than the supremum, for any
sublinear mapping with domF = X one has ‖F‖+ ≥ ‖F‖−. But when domF 6= X, and
thus ‖F‖− =∞, we can have ‖F‖+ < ‖F‖−. In fact, for a sublinear multivalued mapping,
the inner and the outer norms cannot be finite simultaneously (see [1] for details).

Robinson gave in [7] a definition of the inner norm restricted to the domain, namely,

‖F‖−d = sup
x∈B∩domF

inf
y∈F (x)

‖y‖.

This restriction to the domain changes significantly the inner norm so that the duality
theorem does not hold anymore (for more, see [1]).

The norm duality theorem relates inner and outer norms of a mapping and its adjoint
in the sense of Rockafellar [8]. Denoting X∗ and Y ∗ the dual spaces of X and Y , the upper
adjoint of a positively homogeneous mapping F : X ⇒ Y is a mapping F ∗+ : Y ∗ ⇒ X∗

defined as
x∗ ∈ F ∗+(y∗) ⇐⇒ 〈x∗, x〉 ≤ 〈y∗, y〉 for all (x, y) ∈ gphF,

while the lower adjoint is a mapping F ∗− : Y ∗ ⇒ X∗ having

x∗ ∈ F ∗−(y∗) ⇐⇒ 〈x∗, x〉 ≥ 〈y∗, y〉 for all (x, y) ∈ gphF,

that is, gphF ∗+ = − gphF ∗−.
Following [10] we say that a mapping F : X ⇒ Y is inner semicontinuous at x̄ ∈ domF

if for every y ∈ F (x̄) and every neighborhood V of y one can find a neighborhood U of x̄
with

F (x) ∩ V 6= ∅, for all x ∈ U.
The version of Borwein’s theorem we prove is attached next, where, unlike in [3], we do

not assume that X is a Banach space.

Theorem 1 (Norm Duality). Let F : X ⇒ Y be a sublinear mapping between normed spaces
X and Y . Then

(1) ‖F‖+ = ‖F ∗−‖− = ‖F ∗+‖−.

Even more, if Y is a Banach space and gphF is closed, then

(2) ‖F‖− = ‖F ∗−‖+ = ‖F ∗+‖+.

In the proof we use the Hahn-Banach extension theorem (see, e.g., [11, Theorem 3.2]).

Theorem 2 (Hahn-Banach). Let X be a real linear space, and let p : X → R be a function
such that p(x + y) ≤ p(x) + p(y) for all x, y ∈ X, and p(αx) = αp(x) for all x ∈ X and
α ≥ 0. Let M be a real linear subspace of X and let t : M → R be a linear function such
that t(x) ≤ p(x) for all x ∈ M . Then there exists a linear function T : X → R such that
T (x) = t(x) for all x ∈M , and T (x) ≤ p(x) for all x ∈ X.

We also use the following corollary of the extension Theorem 2 (see, e.g., [2, Theo-
rem 2.14]).
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Corollary 3 (Separation). Let X be a real normed space and let C ⊂ X be a nonempty
closed convex set. If x0 6∈ C, then there is x∗ ∈ X∗ such that

〈x∗, x0〉 > sup
x∈C
〈x∗, x〉.

Proof of Theorem 1. First, note that F ∗+(y∗) = −F ∗−(−y∗) for any y∗ ∈ Y ∗. Then

‖F ∗−‖− = ‖F ∗+‖− and ‖F ∗−‖+ = ‖F ∗+‖+.

By definition,
‖F‖+ = sup

x∈B
sup
y∈F (x)

‖y‖ = sup
x∈B

sup
y∈F (x)

sup
y∗∈B
〈y∗, y〉,

and
‖F ∗−‖− = sup

y∗∈B
inf

x∗∈F ∗−(y∗)
‖x∗‖.

To prove the equality ‖F‖+ = ‖F ∗−‖− it is enough to show that

sup
x∈B

sup
y∈F (x)

〈y∗, y〉 = inf
x∗∈F ∗−(y∗)

‖x∗‖ for all y∗ ∈ B.

In fact, this holds true for any y∗ ∈ Y ∗. Fix y∗ ∈ Y ∗.

Step 1. If infx∗∈F ∗−(y∗) ‖x∗‖ < r for some r > 0, then there exist x∗ ∈ F ∗−(y∗) such that
‖x∗‖ < r. For any x̃ ∈ B and ỹ ∈ F (x̃) we have

〈y∗, ỹ〉 ≤ 〈x∗, x̃〉 ≤ sup
x∈B
〈x∗, x〉 = ‖x∗‖ < r,

and then supx∈B supy∈F (x)〈y∗, y〉 ≤ r. Hence

(3) sup
x∈B

sup
y∈F (x)

〈y∗, y〉 ≤ inf
x∗∈F ∗−(y∗)

‖x∗‖.

Step 2. To prove the inequality opposite to (3), assume that

sup
x∈B

sup
y∈F (x)

〈y∗, y〉 < r

for some r > 0. Pick 0 < d < r such that

(4) sup
x∈B

sup
y∈F (x)

〈y∗, y〉 ≤ d.

Define the mapping H : X ⇒ R as

H(x) := {〈y∗, y〉 | y ∈ F (x+ B)}, for x ∈ X.
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First, observe that gphH is convex. Indeed, if (x1, z1), (x2, z2) ∈ gphH and 0 < λ < 1, then
there exist yi ∈ Y and wi ∈ B with zi = 〈y∗, yi〉 and yi ∈ F (xi + wi), for i = 1, 2. Since F is
sublinear, we get

λy1 + (1− λ)y2 ∈ F (λ(x1 + w1) + (1− λ)(x2 + w2)) ⊂ F (λx1 + (1− λ)x2 + B),

and thus,

λ(x1, z1) + (1− λ)(x2, z2) = (λx1 + (1− λ)x2, 〈y∗, λy1 + (1− λ)y2〉) ∈ gphH.

We will show next that H is inner semicontinuous at 0. Take z̃ ∈ H(0) and ε > 0. Let
z̃ = 〈y∗, ỹ〉, for ỹ ∈ F (w̃) and w̃ ∈ B. Since 〈y∗, ·〉 is continuous, there is some γ > 0 such
that |〈y∗, y〉 − z̃| ≤ ε when ‖y − ỹ‖ ≤ γ. Choose δ ∈ (0, 1) such that δ‖ỹ‖ ≤ γ. If ‖x‖ ≤ δ,
we have

‖(1− δ)w̃ − x‖ ≤ ‖(1− δ)w̃‖+ ‖x‖ ≤ 1,

and hence (1− δ)w̃ − x ∈ B. Since F is sublinear,

(1− δ)ỹ ∈ F ((1− δ)w̃) = F (x+ ((1− δ)w̃ − x)) ⊂ F (x+ B),

whenever ‖x‖ ≤ δ. Moreover,

‖(1− δ)ỹ − ỹ‖ = δ‖ỹ‖ ≤ γ,

and then
|〈y∗, (1− δ)ỹ〉 − z̃| ≤ ε.

Therefore, for all x ∈ δB, we have 〈y∗, (1 − δ)ỹ〉 ∈ H(x) ∩ Bε(z̃), and hence H is inner
semicontinuous at 0 as desired.

Let us now define a mapping K : X ⇒ R by

gphK := cone(gph(d−H)).

Clearly K is a sublinear mapping. Since H is inner semicontinuous at 0, there is some
neighborhood U of 0 with U ⊂ domH, and therefore domK = X. Consider

k(x) := inf{z | z ∈ K(x)} for x ∈ X.

Since K is sublinear and d−H(0) ⊂ R+, we have

(5) K(x) +K(−x) ⊂ K(0) ⊂ R+.

This inclusion implies in particular that any point in −K(−x) is a lower bound for the set
of values K(x), for any x ∈ X. Indeed, let x ∈ X and y ∈ −K(−x). Then (5) yields
K(x)− y ⊂ R+, and thus

y ≤ z for all z ∈ K(x).

Therefore k(x) is finite for all x ∈ X, and hence the function k : X → R is well defined.
Also, from the sublinearity of K and the properties of the infimum, we have

k(x+ y) ≤ k(x) + k(y) and k(αx) = αk(x), for all x, y ∈ X and α ≥ 0.
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Consider the subspace M = {0} ⊂ X and define t : M → R by t(0) := k(0) = 0. Applying
the Hahn-Banach extension Theorem 2 to t, we find a linear functional T : X → R such that
T (0) = 0 and T (x) ≤ k(x) for all x ∈ X.

We will show now that T is continuous at 0 and hence it is continuous on the whole X.
Continuity at 0 means that for all ε > 0 there is δ > 0 such that (T (x) + R+) ∩ εB 6= ∅,
whenever x ∈ δB. Let z ∈ d−H(0). Take 0 < λ < 1 and a neighborhood V of z such that
λV ⊂ εB. Since H is inner semicontinuous at 0, there is some δ > 0 such that

(d−H(x)) ∩ V 6= ∅, for all x ∈ (δ/λ)B.

Since d−H(x) ⊂ k(x) + R+ and k(x) ≥ T (x), we have d−H(x) ⊂ T (x) + R+,

(T (x) + R+) ∩ V 6= ∅, for all x ∈ (δ/λ)B,

and then
(T (λx) + R+) ∩ λV 6= ∅, for all x ∈ (δ/λ)B,

which yields
(T (x) + R+) ∩ εB 6= ∅, for all x ∈ δB.

This means that for all x ∈ δB there exists some z ≥ T (x) with |z| ≤ ε. Since T is linear,
T (−x) = −T (x), and therefore |T (x)| ≤ ε for all x ∈ δB. This shows the continuity of T .

The inclusion d−H(x)− T (x) ⊂ R+ is equivalent to

d− 〈y∗, y〉 − T (x) ≥ 0, whenever x ∈ Xand y ∈ F (x+ B).

Let x∗ ∈ X∗ be such that 〈x∗, x〉 = −T (x) for all x ∈ X. Then

〈y∗, y〉 − 〈x∗, x〉 ≤ d, for all x ∈ X and y ∈ F (x+ B).

Pick y ∈ F (x) and λ > 0. Then λy ∈ F (λx) and

〈y∗, λy〉 − 〈x∗, λx〉 ≤ d,

or equivalently,
〈y∗, y〉 − 〈x∗, x〉 ≤ d/λ.

Passing to the limit with λ→∞, we obtain x∗ ∈ F ∗−(y∗). Let now x ∈ B. Since 0 ∈ F (0),
we have 0 ∈ F (−x+ B), and hence

〈y∗, 0〉 − 〈x∗,−x〉 ≤ d.

Therefore ‖x∗‖ ≤ d < r and then infx∗∈F ∗−(y∗) ‖x∗‖ < r. This completes Step 2 and the
proof of (1).

We will complete the proof of (2) by showing that ‖F‖− = ‖F ∗+‖+ when Y is a Banach
space and gphF is closed.
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Step 3. Let ‖F‖− < r for some r > 0. Then for any x̃ ∈ B there is some ỹ ∈ F (x̃) with
‖ỹ‖ < r. Given some y∗ ∈ B and x∗ ∈ F ∗+(y∗) we have

〈x∗, x̃〉 ≤ 〈y∗, ỹ〉 ≤ ‖ỹ‖ < r.

Since this last inequality is valid for any x̃ ∈ B, we obtain ‖x∗‖ ≤ r, and therefore ‖F ∗+‖+ ≤
r. Hence

‖F‖− ≥ ‖F ∗+‖+.

Step 4. To prove ‖F‖− ≤ ‖F ∗+‖+, suppose that ‖F ∗+‖+ < r. Pick s > 0 with

sup
x∗∈F ∗+(B)

‖x∗‖ = ‖F ∗+‖+ ≤ s < r.

Thus, F ∗+(B) ⊂ sB. We will show that (F−1(B))◦ ⊂ F ∗+(B), and hence

(6) (F−1(B))◦ ⊂ sB.

Let x∗ ∈ (F−1(B))◦. Then

〈x∗, x〉 ≤ 1 for all x ∈ F−1(B),

or, equivalently,
sup
y∈B

sup
x∈F−1(B)

〈x∗, x〉 ≤ 1.

This latter inequality is analogous to (4), with d = 1 and F replaced by F−1 and thus, with
y and y∗ replaced by x and x∗, respectively. By repeating the argument in the proof of Step
2, we find some y∗ ∈ (F−1)∗−(x∗) = (F ∗+)−1(x∗) with ‖y∗‖ ≤ 1. But then x∗ ∈ F ∗+(B)
and (6) follows.

Now we will show that (6) implies

(7) s−1B ⊂ clF−1(B).

Indeed, if x 6∈ clF−1(B), then from the separation Corollary 3, there exists x̃∗ ∈ X∗ with

〈x̃∗, x〉 > sup
z∈clF−1(B)

〈x̃∗, z〉 ≥ 〈x̃∗, 0〉 = 0.

Let λ > 0 be such that
sup

z∈clF−1(B)

〈x̃∗, z〉 < λ−1 < 〈x̃∗, x〉.

Then we have
〈λx̃∗, x〉 > 1 > sup

z∈clF−1(B)

〈λx̃∗, z〉.

In particular, this implies that λx̃∗ ∈ (F−1(B))◦ ⊂ sB. Hence,

s ≥ ‖λx̃∗‖ ≥ 〈λx̃∗, x/‖x‖〉 > 1

‖x‖
,
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and therefore x 6∈ s−1B. Thus, (6) holds.
We will show next that

(8) int s−1B ⊂ intF−1(B).

Let x ∈ int s−1B. Then from (6) we have x ∈ int clF−1(B), and hence, there is some ε > 0
such that

Bε(x) ⊂ clF−1(B).

Since clF−1(B) ⊂ F−1(B) + (ε/2)B, we have

x+ εB ⊂ F−1(B) +
ε

2
B.

Multiplying the last inclusion by 1/2 and adding x/2 to both sides we obtain

(9) Bε/2(x) ⊂ 1

2
F−1(B) +

1

2
Bε/2(x).

We will show next that Bε/2(x) ⊂ F−1(B). From (9) we have

Bε/2(x) ⊂ 1

2
F−1(B) +

1

4
F−1(B) + . . .+

1

2k
F−1(B) +

1

2k+1
Bε/2(x),

for all k ∈ N. Let z ∈ Bε/2(x). Then, there is z1, . . . , zk ∈ F−1(B) such that

z ∈ 1

2
z1 +

1

4
z2 + . . .+

1

2k
zk +

1

2k+1
Bε/2(x).

Hence, by induction, for every n ∈ N, there is zn ∈ F−1(B) such that z =
∑

n∈N 2−nzn. Thus,
for each n ∈ N, there is yn ∈ B with (zn, yn) ∈ gphF . Consider the sequences

z̃n :=
n∑
κ=1

1

2k
zk and ỹn :=

n∑
κ=1

1

2k
yk,

for n ∈ N. Clearly, z̃n converges to z. Moreover, since

‖ỹn − ỹn−1‖ =
1

2n
‖yn‖ ≤

1

2n
, for all n ∈ N,

we conclude that ỹn is a Cauchy sequence in Y . Then, since Y is a Banach space, it converges
to some y ∈ Y whose norm satisfies

‖y‖ ≤
∑
n∈N

1

2n
‖yn‖ ≤ 1.

Therefore, the sequence (z̃n, ỹn) converges to (z, y), and because of the closedness of gphF ,
we have z ∈ F−1(y) ⊂ F−1(B).
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Summarizing, we have shown that for any x ∈ int s−1B there exists some ε > 0 such that
Bε/2(x) ⊂ F−1(B). This yields

int s−1B ⊂ intF−1(B).

Then
r−1B ⊂ int s−1B ⊂ F−1(B),

and thus, ‖F‖− ≤ r. This completes the proof of Step 4 and hence we have shown that
‖F‖− = ‖F ∗+‖+, concluding the proof of (2).

Given a sublinear mapping F : X ⇒ Y , where X is a normed space and Y is a Banach
space, we can define a sublinear mapping F̄ : X ⇒ Y by gph F̄ := cl gphF , where clA
denotes the closure of the set A. Since gphF ⊂ gph F̄ , it is clear that gph F̄ ∗+ ⊂ gphF ∗+.
On the other hand, suppose that (y∗, x∗) ∈ gphF ∗+. Let (x, y) ∈ gph F̄ . Then there is
a sequence (xn, yn) ∈ gphF with (xn, yn) → (x, y), and hence 〈x∗, xn〉 ≤ 〈y∗, yn〉. Taking
limits, we have 〈x∗, x〉 ≤ 〈y∗, y〉, and since this is true for all (x, y) ∈ gph F̄ , we obtain
(y∗, x∗) ∈ gph F̄ ∗+. Therefore

(10) F̄ ∗+ = F ∗+.

Also, given x ∈ X, if y ∈ F (x), then (x, y) ∈ gphF ⊂ gph F̄ , and hence y ∈ F̄ (x). Thus,
applying (10) and Theorem 1,

(11) ‖F‖− = sup
x∈B

inf
y∈F (x)

‖y‖ ≥ sup
x∈B

inf
y∈F̄ (x)

‖y‖ = ‖F̄‖− = ‖F̄ ∗+‖+ = ‖F ∗+‖+.

In fact, this inequality follows directly from Step 3 of Theorem 1, where Y does not need to
be a Banach space.

Corollary 4. Let F : X ⇒ Y be a sublinear mapping between normed spaces X and Y .
Then

(12) ‖F‖− ≥ ‖F ∗+‖+ = ‖F ∗−‖+.

The natural question now is the following: is the equality (2) valid without the closed-
ness assumption? The answer is no, even for a single-valued mapping acting between Banach
spaces, as the following example shows.

Consider the Banach space `1 which elements are the scalar-valued sequences x = {xn}n∈N
satisfying

∑
n∈N |xn| <∞, endowed with the norm

‖x‖1 =
∑
n∈N

|xn|.

Let F : `1 → `1 defined by

F (x) =

{
x if xn 6= 0 for a finite number of n

∅ otherwise,
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for x = {xn}n∈N. It is easy to check that F is a sublinear mapping having domF 6= X (e.g.,
for x = {1/2n}n∈N ∈ `1 we have F (x) = ∅). Thus ‖F‖− = ∞. On the other hand, given
x = {xn}n∈N ∈ `1, we can define xk = {xkn}n∈N ∈ `1 by

xkn :=

{
xn for n ≤ k,

0 for n > k.

Then

lim
k→∞
‖x− xk‖ = lim

k→∞

(
∞∑

n=k+1

|xn|

)
= lim

k→∞

(∑
n∈N

|xn| −
k∑

n=1

|xn|

)
= 0,

and thus xk → x. Since F (xk) = xk for all k ∈ N, we have F̄ (x) = x for all x ∈ `1. Then
‖F ∗+‖+ = ‖F̄ ∗+‖+ = ‖F̄‖− = 1, but ‖F‖− =∞.

A modification of this example serve us to show that the first equality in (2) is not valid
in general when Y is not complete. Consider the Banach space c0 whose elements are the
scalar-valued sequences x = {xn}n∈N satisfying limn→∞ xn = 0, endowed with the norm

‖x‖∞ = sup
n∈N
|xn|.

Let c00 be the subspace of c0 consisting of all the sequences with a finite number of nonzero
elements. It is well known that c00 is a normed space which is not complete. Consider the
mapping F : c0 → c00 defined by

F (x) =

{
x if x ∈ c00,
∅ otherwise,

for x = {xn}n∈N. It is not difficult to check that F is a sublinear mapping with domF 6= c0,
and hence ‖F‖− = ∞. In this case gphF is closed, but ‖F ∗+‖+ = 1. Indeed, given
(y∗, x∗) ∈ (c∗00, c

∗
0), we have

(y∗, x∗) ∈ gphF ∗+ ⇐⇒ 〈x∗, x〉 = 〈y∗, x〉 for all x ∈ c00.

Fix y∗ ∈ B and x∗ ∈ F ∗+(y∗). Then

‖x∗‖ = sup
x∈c0∩B

〈x∗, x〉 ≥ sup
x∈c00∩B

〈x∗, x〉 = sup
x∈c00∩B

〈y∗, x〉 = ‖y∗‖.

Moreover, we must have ‖x∗‖ = ‖y∗‖. Otherwise, there is some ε > 0 such that ‖x∗‖ >
‖y∗‖+ ε, and thus, there exists some x̃ ∈ c0 ∩ B with

〈x∗, x̃〉 > ‖y∗‖+ ε = sup
y∈c00∩B

〈y∗, y〉+ ε.

This implies

(13) 〈x∗, x̃〉 > 〈y∗, y〉+ ε = 〈x∗, y〉+ ε for any y ∈ c00 ∩ B.
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If x̃ = {x̃n}n∈N, consider the sequence zn := {x̃1, . . . , x̃n, 0, . . .} ∈ c00 ∩ B, for n ∈ N. Since

‖zn − x̃‖∞ = sup
k>n
|x̃k|,

and x̃ ∈ c0, we have that zn converges to x̃. But (13) implies

〈x∗, x̃〉 > 〈x∗, zn〉+ ε for all n ∈ N.

Then, passing to the limit with n→∞, we obtain a contradiction. Hence, we have ‖x∗‖ =
‖y∗‖ ≤ 1, and therefore ‖F ∗+‖+ = 1 6= ‖F‖− =∞.

Now the next question would be whether the closedness condition is necessary in order
to have (2). The answer turns out to be again negative. Indeed, let F : R → R be defined
by

F (x) =

{
(x,∞) for x 6= 0,

[0,∞) for x = 0.

The graph of this mapping is not closed, but it has ‖F‖− = ‖F ∗+‖+ = ‖F ∗−‖+ = 1.

In [3] Borwein considered another sufficient condition for having the equality (2): the
inner semicontinuity of the mapping F (there called lower semicontinuity). As we can see
from the following example, neither the closedness nor the inner semicontinuity conditions
are necessary for having (2).

Let F : R→ R be a sublinear mapping defined by

F (x) =


(0,∞) for x > 0,

0 for x = 0,

∅ for x < 0.

Here F does not have the graph closed and it is not inner semicontinuous at 0, but it has
‖F‖− = ‖F ∗+‖+ =∞.

These examples leads us to the next result.

Corollary 5. Let F : X ⇒ Y be a sublinear mapping between normed spaces X and Y . Let
F̄ be the closed sublinear mapping defined by gph F̄ = cl gphF . If dom F̄ 6= X or F has the
property

(14) F̄ (x) = clF (x) for all x 6= 0,

then

(15) ‖F‖− = ‖F ∗+‖+ = ‖F ∗−‖+.
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Proof. Because of (11), we just have to prove that ‖F‖− = ‖F̄‖−. If dom F̄ 6= X, then

‖F‖− ≥ ‖F̄‖− =∞,

and thus we obtain (15). Now assume that F verifies (14). We will show that

(16) inf
y∈F (x)

‖y‖ = inf
y∈F̄ (x)

‖y‖, for all x ∈ X.

For x = 0 this is true, since (0, 0) ∈ gphF . Consider now x ∈ X \ {0}. Because of (14),
proving (16) is equivalent to show that

inf
y∈F (x)

‖y‖ = inf
y∈clF (x)

‖y‖,

which is always valid. Taking the relevant suprema we complete the proof.

We will now show that the property (14) is weaker than both closedness and inner
semicontinuity. Therefore, replacing the second part of Theorem 1 with the statement of
Corollary 5 gives us a true generalization of Borwein’s theorem. Indeed, if F is a sublinear
mapping with closed graph it is clear that F̄ = F and clF (x) = F (x) for all x ∈ X. This
implies (14). Now suppose that F is inner semicontinuous at 0. Since always clF (x) ⊂ F̄ (x)
for any x ∈ X, we just need to prove the opposite inclusion. Let y ∈ F̄ (x), for some x ∈ X.
Then there is a sequence (xn, yn) ∈ gphF such that (xn, yn) → (x, y). Let Vk := (1/k)B
for k ∈ N. Since F is inner semicontinuous at 0 and 0 ∈ F (0), for every k ∈ N there is a
neighborhood Uk of 0 such that

(17) F (x) ∩ Vk 6= ∅, for any x ∈ Uk.

Since x − xn → 0, for every k ∈ N there is some nk ≥ k with x − xnk
∈ Uk. Then

from (17) there is some wk ∈ (1/k)B ∩ F (x − xnk
), for every k ∈ N. Hence wk → 0 and

(x− xnk
, wk) ∈ gphF , and therefore,

(x, ynk
+ wk) = (xnk

, ynk
) + (x− xnk

, wk) ∈ gphF,

having ynk
+ wk

k−→ y. Thus y ∈ clF (x) and this implies (14).
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