4 research outputs found

    Spatio-temporal Video Parsing for Abnormality Detection

    Get PDF
    Abnormality detection in video poses particular challenges due to the infinite size of the class of all irregular objects and behaviors. Thus no (or by far not enough) abnormal training samples are available and we need to find abnormalities in test data without actually knowing what they are. Nevertheless, the prevailing concept of the field is to directly search for individual abnormal local patches or image regions independent of another. To address this problem, we propose a method for joint detection of abnormalities in videos by spatio-temporal video parsing. The goal of video parsing is to find a set of indispensable normal spatio-temporal object hypotheses that jointly explain all the foreground of a video, while, at the same time, being supported by normal training samples. Consequently, we avoid a direct detection of abnormalities and discover them indirectly as those hypotheses which are needed for covering the foreground without finding an explanation for themselves by normal samples. Abnormalities are localized by MAP inference in a graphical model and we solve it efficiently by formulating it as a convex optimization problem. We experimentally evaluate our approach on several challenging benchmark sets, improving over the state-of-the-art on all standard benchmarks both in terms of abnormality classification and localization.Comment: 15 pages, 12 figures, 3 table

    Latent Structured Models for Video Understanding

    Get PDF
    The proliferation of videos in recent years has spurred a surge of interest in developing efficient techniques for automatic video interpretation. The thesis improves the understanding of videos by building structured models that use latent information to detect and recognize instances of actions or abnormalities in videos. The thesis also proposes efficient algorithms for inference in and learning of the proposed latent structured models that are appropriate for learning with weak supervision. An important class of latent variable models is the multiple instance learning where the training labels are provided only for bags of instances, but not for instances themselves. As inference of latent instance labels is performed jointly with training of a classifier on the same data, multiple-instance learning is very susceptible to overfitting. To increase the robustness of popular methods for multiple instance learning, the thesis introduces a novel concept of superbags (ensemble of bags of bags) that allows for decoupling of classifier training and latent label inference steps. In the thesis, a novel latent structured representation is proposed to discover instances of action classes in videos and jointly train an action classifier on them. Action class instances typically occupy only a part of the whole video that is not annotated in weakly labeled training videos. Therefore, multiple instance learning is proposed to find these latent action instances in training videos and jointly train the action classifier. The thesis proposes a sequential method to multiple instance learning to increase the robustness of the training. For the interpretation of crowded scenes, it is important to detect all irregular objects or actions in a video. However, the abnormality detection is hindered by the fact that the training set does not contain any abnormal sample, thus it is necessary to find abnormalities in a test video without actually knowing what they are. To address this problem, the thesis proposes a probabilistic graphical model for video parsing that searches for latent object hypotheses to jointly explain all the foreground pixels, which are, at the same time, well matched to the normal training samples. By inferring all latent normal hypotheses in a video, the model indirectly finds abnormalities as those hypotheses that are not supported by normal samples but still need to be used to explain the foreground. Video parsing is applied sequentially on individual video frames, where hypotheses are jointly inferred by a local search in a graphical model. The thesis then proposes a spatio-temporal extension of the video parsing, where an efficient inference method based on convex optimization is developed to find abnormal/normal spatio-temporal hypotheses in the video

    Robust detection and tracking of moving objects in traffic video surveillance

    No full text
    Building an efficient and robust system capable of working in harsh real world conditions represents the ultimate goal of the traffic video surveillance. Despite an evident progress made in the area of statistical background modeling over the last decade or so, moving object detection is still one of the toughest problems in video surveillance, and new approaches are still emerging. Based on our published method for motion detection in the wavelet domain, we propose a novel, wavelet-based method for robust feature extraction and tracking. Hereby, a more efficient approach is proposed that relies on a non-decimated wavelet transformation to achieve both motion segmentation and selection of features for tracking. The use of wavelet transformation for selection of robust features for tracking stems from the persistence of actual edges and corners across the scales of the wavelet transformation. Moreover, the output of the motion detector is used to limit the search space of the feature tracker to those areas where moving objects are found. The results demonstrate a stable and efficient performance of the proposed approach in the domain of traffic video surveillance
    corecore