94 research outputs found

    Dorsolateral Prefrontal Transcranial Direct Current Stimulation Modulates Language Processing but Does Not Facilitate Overt Second Language Word Production.

    Get PDF
    Word retrieval in bilingual speakers partly depends on executive control systems in the left prefrontal cortex - including dorsolateral prefrontal cortex (DLPFC). We tested the hypothesis that DLPFC modulates word production of words specifically in a second language (L2) by measuring the effects of anodal transcranial direct current stimulation (anodal-tDCS) over the DLPFC on picture naming and word translation and on event-related potentials (ERPs) and their sources. Twenty-six bilingual participants with "unbalanced" proficiency in two languages were given 20 min of 1.5 mA anodal or sham tDCS (double-blind stimulation design, counterbalanced stimulation order, 1-week intersession delay). The participants then performed the following tasks: verbal and non-verbal fluency during anodal-tDCS stimulation and first and second language (L1 and L2) picture naming and translation [forward (L1 → L2) and backward (L2 → L1)] immediately after stimulation. The electroencephalogram (EEG) was recorded during picture naming and translation. On the behavioral level, anodal-tDCS had an influence on non-verbal fluency but neither on verbal fluency, nor on picture naming and translation. EEG measures revealed significant interactions between Language and Stimulation on picture naming around 380 ms post-stimulus onset and Translation direction and Stimulation on translation around 530 ms post-stimulus onset. These effects suggest that L2 phonological retrieval and phoneme encoding are spatially and temporally segregated in the brain. We conclude that anodal-tDCS stimulation has an effect at a neural level on phonological processes and, critically, that DLPFC-mediated activation is a constraint on language production specifically in L2

    Experience-based Auditory Predictions Modulate Brain Activity to Silence as do Real Sounds.

    Get PDF
    Interactions between stimuli's acoustic features and experience-based internal models of the environment enable listeners to compensate for the disruptions in auditory streams that are regularly encountered in noisy environments. However, whether auditory gaps are filled in predictively or restored a posteriori remains unclear. The current lack of positive statistical evidence that internal models can actually shape brain activity as would real sounds precludes accepting predictive accounts of filling-in phenomenon. We investigated the neurophysiological effects of internal models by testing whether single-trial electrophysiological responses to omitted sounds in a rule-based sequence of tones with varying pitch could be decoded from the responses to real sounds and by analyzing the ERPs to the omissions with data-driven electrical neuroimaging methods. The decoding of the brain responses to different expected, but omitted, tones in both passive and active listening conditions was above chance based on the responses to the real sound in active listening conditions. Topographic ERP analyses and electrical source estimations revealed that, in the absence of any stimulation, experience-based internal models elicit an electrophysiological activity different from noise and that the temporal dynamics of this activity depend on attention. We further found that the expected change in pitch direction of omitted tones modulated the activity of left posterior temporal areas 140-200 msec after the onset of omissions. Collectively, our results indicate that, even in the absence of any stimulation, internal models modulate brain activity as do real sounds, indicating that auditory filling in can be accounted for by predictive activity

    Frequency, characterisation and therapies of fatigue after stroke.

    Get PDF
    Post-stroke objective or subjective fatigue occurs in around 50% of patients and is frequent (30%) even after minor strokes. It can last more than one year after the event, and is characterised by a different quality from usual fatigue and good response to rest. Associated risk factors include age, single patients, female, disability, depression, attentional impairment and sometimes posterior strokes, but also inactivity, overweight, alcohol and sleep apnoea syndrome. There are few therapy studies, but treatment may include low-intensity training, cognitive therapy, treatment of associated depression, wakefulness-promoting agents like modafinil, correction of risk factors and adaptation of activities

    A new neuropsychological instrument measuring effects of age and drugs on fitness to drive: development, reliability, and validity of MedDrive

    Get PDF
    Background: Current guidelines underline the limitations of existing instruments to assess fitness to drive and the poor adaptability of batteries of neuropsychological tests in primary care settings. Aims: To provide a free, reliable, transparent computer based instrument capable of detecting effects of age or drugs on visual processing and cognitive functions. Methods: Relying on systematic reviews of neuropsychological tests and driving performances, we conceived four new computed tasks measuring: visual processing (Task1), movement attention shift (Task2), executive response, alerting and orientation gain (Task3), and spatial memory (Task4). We then planned five studies to test MedDrive's reliability and validity. Study-1 defined instructions and learning functions collecting data from 105 senior drivers attending an automobile club course. Study-2 assessed concurrent validity for detecting minor cognitive impairment (MCI) against useful field of view (UFOV) on 120 new senior drivers. Study-3 collected data from 200 healthy drivers aged 20-90 to model age related normal cognitive decline. Study-4 measured MedDrive's reliability having 21 healthy volunteers repeat tests five times. Study-5 tested MedDrive's responsiveness to alcohol in a randomised, double-blinded, placebo, crossover, dose-response validation trial including 20 young healthy volunteers. Results: Instructions were well understood and accepted by all senior drivers. Measures of visual processing (Task1) showed better performances than the UFOV in detecting MCI (ROC 0.770 vs. 0.620; p=0.048). MedDrive was capable of explaining 43.4% of changes occurring with natural cognitive decline. In young healthy drivers, learning effects became negligible from the third session onwards for all tasks except for dual tasking (ICC=0.769). All measures except alerting and orientation gain were affected by blood alcohol concentrations. Finally, MedDrive was able to explain 29.3% of potential causes of swerving on the driving simulator. Discussion and conclusions: MedDrive reveals improved performances compared to existing computed neuropsychological tasks. It shows promising results both for clinical and research purposes

    Le Registre suisse pour la santé du cerveau - Une infrastructure nationale pour la recherche sur la maladie d’Alzheimer [The Swiss Brain Health Registry : a national infrastructure for Alzheimer's research]

    Get PDF
    The Memory Centres of several Swiss hospitals have set up a national online registry for Alzheimer's research, called www.BHR-suisse.org. This type of registry already exists in the United States (www.brainhealthregistry.org/) and the Netherlands (https://hersenonderzoek.nl/). It contributes, as do these initiating sites, to the creation of a global database of research partners <sup>b</sup> who wish to contribute by participating in studies on neurodegenerative diseases and more particularly on Alzheimer's disease. By registering, they provide a certain amount of information and become potential research partners. Researchers can then select a panel of volunteers according to the selection and exclusion criteria of their studies, contact them and include them in their studies

    Use it or lose it! Cognitive activity as a protec-tive factor for cognitive decline associated with Alzheimer's disease.

    Get PDF
    Because of the worldwide aging of populations, Alzheimer's disease and other dementias constitute a devastating experience for patients and families as well as a major social and economic burden for both healthcare systems and society. Multiple potentially modifiable cardiovascular and lifestyle risk factors have been associated with this disease. Thus, modifying these risk factors and identifying protective factors represent important strategies to prevent and delay disease onset and to decrease the social burden. Based on the cognitive reserve hypothesis, evidence from epidemiological studies shows that low education and cognitive inactivity constitute major risk factors for dementia. This indicates that a cognitively active lifestyle may protect against cognitive decline or delay the onset of dementia. We describe a newly developed preventive programme, based on this evidence, to stimulate and increase cognitive activity in older adults at risk for cognitive decline. This programme, called "BrainCoach", includes the technique of "motivational interviewing" to foster behaviour change. If the planned feasibility study is successful, we propose to add BrainCoach as a module to the already existing "Health Coaching" programme, a Swiss preventive programme to address multiple risk factors in primary care

    Sound recognition and localization in man: specialized cortical networks and effects of acute circumscribed lesions.

    Get PDF
    Functional imaging studies have shown that information relevant to sound recognition and sound localization are processed in anatomically distinct cortical networks. We have investigated the functional organization of these specialized networks by evaluating acute effects of circumscribed hemispheric lesions. Thirty patients with a primary unilateral hemispheric lesion, 15 with right-hemispheric damage (RHD) and 15 with left-hemispheric damage (LHD), were evaluated for their capacity to recognise environmental sounds, to localize sounds in space and to perceive sound motion. One patient with RHD and 2 with LHD had a selective deficit in sound recognition; 3 with RHD a selective deficit in sound localization; 2 with LHD a selective deficit in sound motion perception; 4 with RHD and 3 with LHD a combined deficit of sound localization and motion perception; 2 with RHD and 1 with LHD a combined deficit of sound recognition and motion perception; and 1 with LHD a combined deficit of sound recognition, localization and motion perception. Five patients with RHD and 6 with LHD had normal performance in all three domains. Deficient performance in sound recognition, sound localization and/or sound motion perception was always associated with a lesion that involved the shared auditory structures and the specialized What and/or Where networks, while normal performance was associated with lesions within or outside these territories. Thus, damage to regions known to be involved in auditory processing in normal subjects is necessary, but not sufficient for a deficit to occur. Lesions of a specialized network was not always associated with the corresponding deficit. Conversely, specific deficits tended not be associated predominantly with lesions of the corresponding network; e.g. deficits in auditory spatial tasks were observed in patients whose lesions involved to a larger extent the shared auditory structures and the specialized What network than the specialized Where network, and deficits in sound recognition in patients whose lesions involved mostly the shared auditory structures and to a varying degree the specialized What network. The human auditory cortex consists of functionally defined auditory areas, whose intrinsic organization is currently not understood. In particular, areas involved in the What and Where pathways can be conceived as: (1) specialized regions, in which lesions cause dysfunction limited to the damaged part; observed deficits should be then related to the specialization of the damaged region and their magnitude to the extent of the damage; or (2) specialized networks, in which lesions cause dysfunction that may spread over the two specialized networks; observed deficits may then not be related to the damaged region and their magnitude not proportional to the extent of the damage. Our results support strongly the network hypothesis

    Medical treatment of migraine: from mechanisms of action to contraindications.

    No full text
    Management of migraine patients with or without aura must include appropriate medication to treat the attack and long-term preventive therapy, especially if the frequency of the attacks is greater than 2-4 per month. In both cases the choice of treatment depends on its efficacy and side effects. With regard to acute drug therapy, group studies do not suggest that ergot derivatives and sumatriptan are superior to simple analgesics and anti-inflammatory drugs, particularly if a prokinetic agent is added. These new substances are indicated for severe attacks refractory to more conventional therapy. Chronic drug abuse may induce drug-induced or rebound headaches. As regards long-term prophylaxis, group studies suggest that calcium antagonists and 5-HT-influencing drugs are superior concerning attacks frequency to beta-blocking agents, but involve very frequent side effects (weight gain and somnolence). Interesting preliminary results have also been reported with valproate and enalapril, which will confirmation by controlled studies. Finally, the choice of drug must take into account the patient's comorbidities (cardiovascular diseases, asthma, diabetes etc)
    corecore