64 research outputs found
Anti-correlation between multiplicity and orbital properties in exoplanetary systems as a possible record of their dynamical histories
Previous works focused on exoplanets discovered with the radial velocity (RV)
method reported an anti-correlation between the orbital eccentricities of the
exoplanets and the multiplicity M (i.e., number of planets) of their system. We
further investigate this reported anti-correlation here using a dataset
comprising exoplanets discovered with both the RV and transit methods,
searching for hints of its causes by exploring the connection between the
number of planets and the dynamical state of the exosystems. To examine the
correlation between multiplicity and orbital eccentricity, for every
multiplicity case considered (1<M<7), we computed the weighted average
eccentricities instead of the median eccentricities used previously. The
average eccentricities were calculated using the inverse of the uncertainty on
the eccentricity values as weights. The analysis of the dynamic state of the
exosystems was performed by computing their angular momentum deficit (AMD), a
diagnostic parameter used in the study of solar system and recently applied to
exosystems. Our results confirm the reported multiplicity-eccentricity
anti-correlation and show that the use of the uncertainties on the orbital
eccentricities in the analysis allows for a better agreement between data and
fits. Our best fit reproduces well the behaviour of average eccentricities for
all systems with M>1, including the additional cases of TRAPPIST-1 (M=7) and
solar system (M=8). The AMD analysis, while not conclusive due to the limited
number of exosystems that could be analysed, also suggests the existence of an
anti-correlation between the multiplicity and the AMD of exosystems. This
second anticorrelation, if confirmed by future studies, raises the possibility
that the population of low-multiplicity exosystems is contaminated by former
high-multiplicity systems that became dynamically unstable and lost some of
their planets
Recognition of landslides in lunar impact craters
Landslides have been observed on several planets and minor bodies of the solar System, including the Moon. Notwithstanding different types of slope failures have been studied on the Moon, a detailed lunar landslide inventory is still pending. Undoubtedly, such will be in a benefit for future geological and morphological studies, as well in hazard, risk and suscept- ibility assessments. A preliminary survey of lunar landslides in impact craters has been done using visual inspection on images and digital elevation model (DEM) (Brunetti et al. 2015) but this method suffers from subjective interpretation. A new methodology based on polynomial interpolation of crater cross-sections extracted from global lunar DEMs is presented in this paper. Because of their properties, Chebyshev polynomials were already exploited for para- metric classification of different crater morphologies (Mahanti et al., 2014). Here, their use has been extended to the discrimination of slumps in simple impact craters. Two criteria for recognition have provided the best results: one based on fixing an empirical absolute thresholding and a second based on statistical adaptive thresholding. The application of both criteria to a data set made up of 204 lunar craters’ cross-sections has demonstrated that the former criterion provides the best recognition
The SSDC contribution to the improvement of knowledge by means of 3D data projections of minor bodies
The latest developments of planetary exploration missions devoted to minor
bodies required new solutions to correctly visualize and analyse data acquired
over irregularly shaped bodies. ASI Space Science Data Center (SSDC-ASI,
formerly ASDC-ASI Science Data Center) worked on this task since early 2013,
when started developing the web tool MATISSE (Multi-purpose Advanced Tool for
the Instruments of the Solar System Exploration) mainly focused on the
Rosetta/ESA space mission data. In order to visualize very high-resolution
shape models, MATISSE uses a Python module (vtpMaker), which can also be
launched as a stand-alone command-line software. MATISSE and vtpMaker are part
of the SSDC contribution to the new challenges imposed by the "orbital
exploration" of minor bodies: 1) MATISSE allows to search for specific
observations inside datasets and then analyse them in parallel, providing
high-level outputs; 2) the 3D capabilities of both tools are critical in
inferring information otherwise difficult to retrieve for non-spherical targets
and, as in the case for the GIADA instrument onboard Rosetta, to visualize data
related to the coma. New tasks and features adding valuable capabilities to the
minor bodies SSDC tools are planned for the near future thanks to new
collaborations
Localizzazione e caratterizzazione di frane all’interno dei crateri di impatto lunari
Geological slope failure processes have been observed on the Moon surface for decades. However a detailed and exhaustive lunar landslide inventory has not been produced yet. As a part of the “Moon Mapping” cooperative project between Italy and China, an algorithm for lunar landslide detection in impact craters has been proposed. The simple type of impact craters sizing between 5-12 km has been analysed. The Chebyshev polynomials have been used for estimating crater’s cross-sectional profiles on the basis of a 100 m x 100 m resolution digital elevation model (WACGDL100 DEM) derived from LROC NASA mission. The presence of landslides in lunar craters is then investigated by analysing the contribution of odd coefficients of the estimated polynomials, since they are representing the asymmetric component of a transversal profile. After the analysis of four orthogonal profiles per crater, we correctly classified 87.7% of cross-sectional profiles really affected by slope failures. On the other side, we obtained a correct classification of 83.3% of cross- sectional profiles without slope failures. Even though a complete successful rate could not be achieved, these results are quite encouraging since the proposed automated procedure would allow to a first scrutiny of the presence of landslides in craters, to be refined afterwards with visual recognition and the analysis of other types of data
Studio dei fenomeni di dissesto geologico sulla superficie lunare a partire dai dati telerilevati dai satelliti Chang’E 1 e 2
The exploration of the Moon has become an important goal for several countries in order to set up foundations for future exploration of mineral resources. In the framework of the cooperation project “Moon Mapping” between Italy and P.R. China, a working group has been established to study landslides inside impact craters. So far, WAC (Wide Angle Camera) images and DEM (Digital Elevation Model) maps from LROC (NASA) at 100 m/pixel have been used to visually recognize some landslides in impact craters. Further steps include: (i) the classification of impact craters; (ii) the identification for each crater type of a theoretical shape; (iii) the automatic identification of the landslide through the analysis of deviations from the theoretical shape; (iv) the measurement of the landslide deposit volume; (v) the analysis of relationships between landslides and characteristics of the hosting craters and of the surrounding terrain (topographic slope, geology, etc); (vi) the comparison of multispectral data with available spectral libraries to map geological features on the Moon surfaces
Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos
The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test1. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact. On the basis of the change in the binary orbit period2, we find an instantaneous reduction in Dimorphos’s along-track orbital velocity component of 2.70 ± 0.10 mm s−1, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact3,4. For a Dimorphos bulk density range of 1,500 to 3,300 kg m−3, we find that the expected value of the momentum enhancement factor, β, ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg m−3, β=3.61+0.19−0.25(1σ). These β values indicate that substantially more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos
The SSDC Role in the LICIACube Mission: Data Management and the MATISSE Tool
Light Italian Cubesat for Imaging of Asteroids (LICIACube) is an Italian mission managed by the Italian Space
Agency (ASI) and part of the NASA Double Asteroid Redirection Test (DART) planetary defense mission. Its
main goals are to document the effects of the DART impact on Dimorphos, the secondary member of the (65803)
Didymos binary asteroid system, characterizing the shape of the target body and performing dedicated scientific
investigations on it. Within this framework, the mission Science Operations Center will be managed by the Space
Science Data Center (ASI-SSDC), which will have the responsibility of processing, archiving, and disseminating
the data acquired by the two LICIACube onboard cameras. In order to better accomplish this task, SSDC also plans
to use and modify its scientific webtool Multi-purpose Advanced Tool for Instruments for the solar system
Exploration (MATISSE), making it the primary tool for the LICIACube data analysis, thanks to its advanced
capabilities for searching and visualizing data, particularly useful for the irregular shapes common to several small
bodies
VADER: Probing the Dark Side of Dimorphos with LICIACube LUKE
The ASI cubesat LICIACube has been part of the first planetary defense mission DART, having among its scopes to complement the DRACO images to better constrain the Dimorphos shape. LICIACube had two different cameras, LEIA and LUKE, and to accomplish its goal, it exploited the unique possibility of acquiring images of the Dimorphos hemisphere not seen by DART from a vantage point of view, in both time and space. This work is indeed aimed at constraining the tridimensional shape of Dimorphos, starting from both LUKE images of the nonimpacted hemisphere of Dimorphos and the results obtained by DART looking at the impacted hemisphere. To this aim, we developed a semiautomatic Computer Vision algorithm, named VADER, able to identify objects of interest on the basis of physical characteristics, subsequently used as input to retrieve the shape of the ellipse projected in the LUKE images analyzed. Thanks to this shape, we then extracted information about the Dimorphos ellipsoid by applying a series of quantitative geometric considerations. Although the solution space coming from this analysis includes the triaxial ellipsoid found by using DART images, we cannot discard the possibility that Dimorphos has a more elongated shape, more similar to what is expected from previous theories and observations. The result of our work seems therefore to emphasize the unique value of the LICIACube mission and its images, making even clearer the need of having different points of view to accurately define the shape of an asteroid.This work was supported by the Italian Space Agency (ASI) within the LICIACube project (ASI-INAF agreement AC No. 2019-31-HH.0) and by the DART mission, NASA contract 80MSFC20D0004
The Dimorphos ejecta plume properties revealed by LICIACube
The Double Asteroid Redirection Test (DART) had an impact with Dimorphos (a satellite of the asteroid Didymos) on 26 September 20221. Ground-based observations showed that the Didymos system brightened by a factor of 8.3 after the impact because of ejecta, returning to the pre-impact brightness 23.7 days afterwards2. Hubble Space Telescope observations made from 15 minutes after impact to 18.5 days after, with a spatial resolution of 2.1 kilometres per pixel, showed a complex evolution of the ejecta3, consistent with other asteroid impact events. The momentum enhancement factor, determined using the measured binary period change4, ranges between 2.2 and 4.9, depending on the assumptions about the mass and density of Dimorphos5. Here we report observations from the LUKE and LEIA instruments on the LICIACube cube satellite, which was deployed 15 days in advance of the impact of DART. Data were taken from 71 seconds before the impact until 320 seconds afterwards. The ejecta plume was a cone with an aperture angle of 140 ± 4 degrees. The inner region of the plume was blue, becoming redder with increasing distance from Dimorphos. The ejecta plume exhibited a complex and inhomogeneous structure, characterized by filaments, dust grains and single or clustered boulders. The ejecta velocities ranged from a few tens of metres per second to about 500 metres per second.This work was supported by the Italian Space Agency (ASI) in the LICIACube project (ASI-INAF agreement AC no. 2019-31-HH.0) and by the DART mission, NASA contract 80MSFC20D0004. M.Z. acknowledges Caltech and the Jet Propulsion Laboratory for granting the University of Bologna a licence to an executable version of MONTE Project Edition software. M.Z. is grateful to D. Lubey, M. Smith, D. Mages, C. Hollenberg and S. Bhaskaran of NASA/JPL for the discussions and suggestions regarding the operational navigation of LICIACube. G.P. acknowledges financial support from the Centre national d’études spatiales (CNES, France). A.C.B. acknowledges funding by the NEO-MAPP project (grant agreement 870377, EC H2020-SPACE-2019) and by the Ministerio de Ciencia Innovación (PGC 2018) RTI2018-099464-B-I00. F.F. acknowledges funding from the Swiss National Science Foundation (SNSF) Ambizione (grant no. 193346). J.-Y.L. acknowledges the support from the NASA DART Participating Scientist Program (grant no. 80NSSC21K1131). S.D.R. and M.J. acknowledge support from the Swiss National Science Foundation (project no. 200021_207359)
- …