16 research outputs found

    Improving cost and time control in construction using Building Information Model (BIM): a review

    Get PDF
    The control of cost and time in construction projects is one of the most important issues in construction since the emergence of the construction industry. A successful project should meet not only quality output standards, but also time and budget objectives. The management and control of cost and time in construction is fundamental in every project. An effective cost and time management and control technique for construction projects is important in managing risk of cost overrun and delay in completion of projects. Construction projects are becoming more complex as they now involve many stakeholders from different disciplines. The emergence of Building Information Model (BIM), an alternative technology is believed to solve issues related to project cost and time control as it efficiently increases collaboration between stakeholders. The aim of this paper is to review and summarise the causes of delay and cost overrun in construction industries, which are the main causes of disputes and abandonment of projects in the industry. It was found that delays and cost overrun eat deep into the industry and leave the construction industry with a bad image for decades even with rapid advancement in technology. The review of the applications of BIM showed that most of the applications are geared towards minimising construction cost and time spent on projects. This means that the use of BIM in the management of construction projects has great impact on project cost and time

    Nonlinear Meta-Optics

    No full text
    This book addresses fabrication as well as characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects. The visible range as well as near and far infrared spectral region will be considered with a view to different envisaged applications. The book covers the current key challenges of the research in the area, including: exploiting new material platforms, fully extending the device operation into the nonlinear regime, adding re-configurability to the envisaged devices and proposing new modeling tools to help in conceiving new functionalities. � Explores several topics in the field of semiconductor nonlinear nanophotonics, including fabrication, characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects � Describes the research challenges in the field of optical metasurfaces in the nonlinear regime � Reviews the use and achievements of all-dielectric nanoantennas for strengthening the nonlinear optical response � Describes both theoretical and experimental aspects of photonic devices based on semiconductor optical nanoantennas and metasurfaces � Gathers contributions from several leading groups in this research field to provide a thorough and complete overview of the current state of the art in the field of semiconductor nonlinear nanophotonics

    Theoretical Model for Pattern Engineering of Harmonic Generation in All-Dielectric Nanoantennas

    No full text
    We develop a novel theoretical model for the study of harmonic generation in cylindrical structures of finite height. Our technique is based on the decomposition of the electromagnetic field over the complete set of modes of the corresponding infinite cylinder. Differently from previous works, in our model no constraints are given neither on the cross section nor on the refractive index of the cylinder. We then apply our approach in the special case of frequency doubling in tall AlGaAs nanodisks, where radiative modes can be neglected. Our results open new perspectives for optimization and engineering of the radiation pattern in harmonic generation processes at the nanoscale

    Advances in nonlinear metasurfaces for imaging, quantum, and sensing applications

    No full text
    Metasurfaces, composed of artificial meta-atoms of subwavelength size, can support strong light–matter interaction based on multipolar resonances and plasmonics, hence offering the great capability of empowering nonlinear generation. Recently, owing to their ability to manipulate the amplitude and phase of the nonlinear emission in the subwavelength scale, metasurfaces have been recognized as ultra-compact, flat optical components for a vast range of applications, including nonlinear imaging, quantum light sources, and ultrasensitive sensing. This review focuses on the recent progress on nonlinear metasurfaces for those applications. The principles and advances of metasurfaces-based techniques for image generation, including image encoding, holography, and metalens, are investigated and presented. Additionally, the overview and development of spontaneous photon pair generation from metasurfaces are demonstrated and discussed, focusing on the aspects of photon pair generation rate and entanglement of photon pairs. The recent blossoming of the nonlinear metasurfaces field has triggered growing interest to explore its ability to efficiently up-convert infrared images of arbitrary objects to visible images and achieve spontaneous parametric down-conversion. This recently emerged direction holds promising potential for the next-generation technology in night-vision, quantum computing, and biosensing fields

    Nonlinear Anisotropic Dielectric Metasurfaces for Ultrafast Nanophotonics

    No full text
    We report on the broadband transient optical response of anisotropic, amorphous silicon nanobricks that exhibit Mie-type resonances. A quantitative model is developed to identify and disentangle the three physical processes that govern the ultrafast changes of the nanobrick optical properties, namely, two-photon absorption, free-carrier relaxation, and lattice heating. We reveal a set of operating windows where ultrafast all-optical modulation of transmission is achieved with full return to zero in 20 ps. This is made possible because of the distinct dispersive features exhibited by the competing nonlinear processes in transmission and despite the slow (nanosecond) internal lattice dynamics. The observed ultrafast switching behavior can be independently engineered for both orthogonal polarizations using the large anisotropy of nanobricks, thus allowing ultrafast anisotropy control. Our results categorically ascertain the potential of all-dielectric resonant nanophotonics as a platform for ultrafast optical devices and reveal the possibility for ultrafast polarization-multiplexed displays and polarization rotators

    Sum-frequency generation and photon-pair creation in AlGaAs nano-disks

    No full text
    All-dielectric and semiconductor nonlinear nanophotonics is an emerging field enabling efficient optical interactions between magnetic and electric resonances at sub-wavelength scales, thereby achieving high directionality and high figures of merit due to very low losses [1, 2]. It was shown that AlGaAs nanodisks with quadratic nonlinear susceptibility can provide second harmonic generation (SHG) with record-high efficiency of 10 -4 [3], opening to a wide range of possible applications, including nonlinear microscopy and holography. In this work, we show experimentally that the strong quadratic nonlinearity in AlGaAs nano-disks allows efficient sum-frequency generation (SFG) with nontrivial polarization dependencies. By using the established classical-quantum analogy [4], we predict that these nano-resonators can facilitate efficient generation of quantum entangled photon pairs with higher than kHz biphoton rate and strong angular correlations

    Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought: reductions in primary productivity in the heat and drought year of 2003

    No full text
    We used a nonintrusive field experiment carried out at six sites - Wales (UK), Denmark (DK), the Netherlands (NL), Hungary (HU), Sardinia (Italy - IT), and Catalonia (Spain - SP) - along a climatic and latitudinal gradient to examine the response of plant species richness and primary productivity to warming and drought in shrubland ecosystems. The warming treatment raised the plot daily temperature by ca. 1 °C, while the drought treatment led to a reduction in soil moisture at the peak of the growing season that ranged from 26% at the SP site to 82% in the NL site. During the 7 years the experiment lasted (1999-2005), we used the pin-point method to measure the species composition of plant communities and plant biomass, litterfall, and shoot growth of the dominant plant species at each site. A significantly lower increase in the number of species pin-pointed per transect was found in the drought plots at the SP site, where the plant community was still in a process of recovering from a forest fire in 1994. No changes in species richness were found at the other sites, which were at a more mature and stable state of succession and, thus less liable to recruitment of new species. The relationship between annual biomass accumulation and temperature of the growing season was positive at the coldest site and negative at the warmest site. The warming treatment tended to increase the aboveground net primary productivity (ANPP) at the northern sites. The relationship between annual biomass accumulation and soil moisture during the growing season was not significant at the wettest sites, but was positive at the driest sites. The drought treatment tended to reduce the ANPP in the NL, HU, IT, and SP sites. The responses to warming were very strongly related to the Gaussen aridity index (stronger responses the lower the aridity), whereas the responses to drought were not. Changes in the annual aboveground biomass accumulation, litterfall, and, thus, the ANPP, mirrored the interannual variation in climate conditions: the most outstanding change was a decrease in biomass accumulation and an increase in litterfall at most sites during the abnormally hot year of 2003. Species richness also tended to decrease in 2003 at all sites except the cold and wet UK site. Species-specific responses to warming were found in shoot growth: at the SP site, Globularia alypum was not affected, while the other dominant species, Erica multiflora, grew 30% more; at the UK site, Calluna vulgaris tended to grow more in the warming plots, while Empetrum nigrum tended to grow less. Drought treatment decreased plant growth in several studied species, although there were some species such as Pinus halepensis at the SP site or C. vulgaris at the UK site that were not affected. The magnitude of responses to warming and drought thus depended greatly on the differences between sites, years, and species and these multiple plant responses may be expected to have consequences at ecosystem and community level. Decreases in biodiversity and the increase in E. multiflora growth at the SP site as a response to warming challenge the assumption that sensitivity to warming may be less well developed at more southerly latitudes; likewise, the fact that one of the studied shrublands presented negative ANPP as a response to the 2003 heat wave also challenges the hypothesis that future climate warming will lead to an enhancement of plant growth and carbon sequestration in temperate ecosystems. Extreme events may thus change the general trend of increased productivity in response to warming in the colder sites
    corecore