15 research outputs found

    The nuclear receptor LXRα controls the functional specialization of splenic macrophages.

    Get PDF
    Macrophages are professional phagocytic cells that orchestrate innate immune responses and have considerable phenotypic diversity at different anatomical locations. However, the mechanisms that control the heterogeneity of tissue macrophages are not well characterized. Here we found that the nuclear receptor LXRα was essential for the differentiation of macrophages in the marginal zone (MZ) of the spleen. LXR-deficient mice were defective in the generation of MZ and metallophilic macrophages, which resulted in abnormal responses to blood-borne antigens. Myeloid-specific expression of LXRα or adoptive transfer of wild-type monocytes restored the MZ microenvironment in LXRα-deficient mice. Our results demonstrate that signaling via LXRα in myeloid cells is crucial for the generation of splenic MZ macrophages and identify an unprecedented role for a nuclear receptor in the generation of specialized macrophage subsets

    An anti-ICAM-2 (CD102) monoclonal antibody induces immune-mediated regressions of transplanted ICAM-2-negative colon carcinomas

    Get PDF
    Monoclonal antibodies (mAbs) can mediate antitumor effects by indirect mechanisms involving antiangiogenesis and up-regulation of the cellular immune response rather than by direct tumor cell destruction. From mAbs raised by immunization of rats with transformed murine endothelial cells, a mAb (EOL4G8) was selected for its ability to eradicate a fraction of established colon carcinomas that did not express the EOL4G8-recognized antigen. The antigen was found to be ICAM-2 (CD102). Antitumor effects of EOL4G8, which required a functional T-cell compartment, were abrogated by depletion of CD8(+) cells and correlated with antitumor CTL activity, whereas only a mild inhibition of angiogenesis was observed. Interestingly, we found that EOL4G8 acting on endothelial ICAM-2 markedly enhances leukotactic factor activity-1-independent adhesion of immature dendritic cells to endothelium-an effect that is at least in part mediated by DC-SIGN (CD209)

    RUNX/AML and C/EBP factors regulate CD11a integrin expression in myeloid cells through overlapping regulatory elements

    Get PDF
    The CD11a/CD18 (leukocyte functionassociated antigen 1 [LFA-1]) integrin mediates critical leukocyte adhesive interactions during immune and inflammatory responses. The CD11a promoter directs CD11a/CD18 integrin expression, and its activity in lymphoid cells depends on a functional RUNX1/AML-1–binding site (AML-110) within the MS7 sequence. We now report that MS7 contains a C/EBPbinding site (C/EBP-100), which overlaps with AML-110 and is bound by C/EBP factors in myeloid cells. C/EBP and RUNX/ AML factors compete for binding to their respective cognate elements and bind to the CD11a promoter MS7 sequence in a cell lineage- and differentiation-dependent manner. In myeloid cells MS7 is primarily recognized by C/EBP factors in proliferating cells whereas RUNX/AMLfactors (especially RUNX3/AML-2) bind to MS7 in differentiated cells. RUNX3/AML-2 binding to the CD11a promoter correlates with increased RUNX3/AML-2 protein levels and enhanced CD11a/CD18 cell surface expression. The relevance of the AML-110 element is underscored by the ability of AML-1/ETO to inhibit CD11a promoter activity, thus explaining the low CD11a/CD18 expression in t(8;21)–containing myeloid leukemia cells. Therefore, the expression of the CD11a/CD18 integrin in myeloid cells is determined through the differential occupancy of the CD11a proximal promoter by transcription factors implicated in the pathogenesis of myeloid leukemia

    MMP-12, Secreted by Pro-Inflammatory Macrophages, Targets Endoglin in Human Macrophages and Endothelial Cells

    Get PDF
    Upon inflammation, monocyte-derived macrophages (MF) infiltrate blood vessels to regulate several processes involved in vascular pathophysiology. However, little is known about the mediators involved. Macrophage polarization is crucial for a fast and e cient initial response (GM-MF) and a good resolution (M-MF) of the inflammatory process. The functional activity of polarized MF is exerted mainly through their secretome, which can target other cell types, including endothelial cells. Endoglin (CD105) is a cell surface receptor expressed by endothelial cells and MF that is markedly upregulated in inflammation and critically involved in angiogenesis. In addition, a soluble form of endoglin with anti-angiogenic activity has been described in inflammation-associated pathologies. The aim of this work was to identify components of the MF secretome involved in the shedding of soluble endoglin. We find that the GM-MF secretome contains metalloprotease 12 (MMP-12), a GM-MF specific marker that may account for the anti-angiogenic activity of the GM-MF secretome. Cell surface endoglin is present in both GM-MF and M-MF, but soluble endoglin is only detected in GM-MF culture supernatants. Moreover, MMP-12 is responsible for the shedding of soluble endoglin in vitro and in vivo by targeting membrane-bound endoglin in both MF and endothelial cells. These data demonstrate a direct correlation between GM-MF polarization, MMP-12, and soluble endoglin expression and function. By targeting endothelial cells, MMP-12 may represent a novel mediator involved in vascular homeostasis.Ministerio de Ciencia, Innovación y Universidades of Spain (SAF2013-43421-R to C.B.; SAF2017-83785-R and SAF2014-23801 to A.L.C.)Consejo Superior de Investigaciones Cientificas (201920E022 to C.B.)Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER; ISCIII-CB06/07/0038 to C.B.)Czech Republic Specific University Research (SVV-260414 to P.N.)CIBERER is an initiative of the Instituto de Salud Carlos III (ISCIII) of Spain supported by FEDER fundsM.A. was funded with a fellowship from Ministerio de Ciencia e Innovación (BES-2008-003888)M.V. was supported by a short-term mobility fellowship from the European Erasmus Programm
    corecore