19,143 research outputs found

    Volume Fraction Determination in Cast Superalloys and DS Eutectic Alloys by a New Practice for Manual Point Counting

    Get PDF
    Volume fraction of a constituent or phase was estimated in six specimens of conventional and DS-eutectic superalloys, using ASTM E562-76, a new standard recommended practice for determining volume fraction by systematic manual point count. Volume fractions determined ranged from 0.086 to 0.36, and with one exception, the 95 percent relative confidence limits were approximately 10 percent of the determined volume fractions. Since the confidence-limit goal of 10 percent, which had been arbitrarily chosen previously, was achieved in all but one case, this application of the new practice was considered successful

    Application of the SEM to the measurement of solar cell parameters

    Get PDF
    Techniques are described which make use of the SEM to measure the minority carrier diffusion length and the metallurgical junction depth in silicon solar cells. The former technique permits the measurement of the true bulk diffusion length through the application of highly doped field layers to the back surfaces of the cells being investigated. It is shown that the secondary emission contrast observed in the SEM on a reverse-biased diode can depict the location of the metallurgical junction if the diode has been prepared with the proper beveled geometry. The SEM provides the required contrast and the option of high magnification, permitting the measurement of extremely shallow junction depths

    System and method for moving a probe to follow movements of tissue

    Get PDF
    An apparatus is described for moving a probe that engages moving living tissue such as a heart or an artery that is penetrated by the probe, which moves the probe in synchronism with the tissue to maintain the probe at a constant location with respect to the tissue. The apparatus includes a servo positioner which moves a servo member to maintain a constant distance from a sensed object while applying very little force to the sensed object, and a follower having a stirrup at one end resting on a surface of the living tissue and another end carrying a sensed object adjacent to the servo member. A probe holder has one end mounted on the servo member and another end which holds the probe

    Laser-modified one- and two-photon absorption:Expanding the scope of optical nonlinearity

    Get PDF
    It is shown that conventional one-photon and two-photon absorption processes can be made subject to nonlinear optical control, in each case significantly modifying the efficiency of absorption, through the effect of a secondary, off-resonant stimulus laser beam. The mechanistic origin of these laser-modified absorption processes, in which the stimulus beam emerges unchanged, is traced to higher-order terms in standard perturbation treatments. These normally insignificant terms become unusually prominent when the secondary optical stimulus is moderately intense. Employing a quantum formulation, the effects of the stimulus beam on one-photon and two-photon absorption are analyzed, and calculations are performed to determine the degree of absorption enhancement, and the form of spectral manifestation, under various laser intensities. The implications of differences in selection rules are also considered and exemplified, leading to the identification of dark states that can be populated as a result of laser-modified absorption. Attention is also drawn to the possibility of quantum nondemolition measurements, based on such a form of optical nonlinearity

    Quantum Kinetic Theory VI: The Growth of a Bose-Einstein Condensate

    Full text link
    A detailed analysis of the growth of a BEC is given, based on quantum kinetic theory, in which we take account of the evolution of the occupations of lower trap levels, and of the full Bose-Einstein formula for the occupations of higher trap levels, as well as the Bose stimulated direct transfer of atoms to the condensate level introduced by Gardiner et al. We find good agreement with experiment at higher temperatures, but at lower temperatures the experimentally observed growth rate is somewhat more rapid. We also confirm the picture of the ``kinetic'' region of evolution, introduced by Kagan et al., for the time up to the initiation of the condensate. The behavior after initiation essentially follows our original growth equation, but with a substantially increased rate coefficient. Our modelling of growth implicitly gives a model of the spatial shape of the condensate vapor system as the condensate grows, and thus provides an alternative to the present phenomenological fitting procedure, based on the sum of a zero-chemical potential vapor and a Thomas-Fermi shaped condensate. Our method may give substantially different results for condensate numbers and temperatures obtained from phenomentological fits, and indicates the need for more systematic investigation of the growth dynamics of the condensate from a supersaturated vapor.Comment: TeX source; 29 Pages including 26 PostScript figure

    The NASA Lewis Research Center Internal Fluid Mechanics Facility

    Get PDF
    An experimental facility specifically designed to investigate internal fluid duct flows is described. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints of future test hardware. The plenum flow conditioning approach is also detailed. Available instrumentation and data acquisition capabilities are discussed. The incoming flow quality was documented over the current facility operating range. The incoming flow produces well behaved turbulent boundary layers with a uniform core. For the calibration duct used, the boundary layers approached 10 percent of the duct radius. Freestream turbulence levels at the various operating conditions varied from 0.64 to 0.69 percent of the average freestream velocity
    corecore