8,958 research outputs found
Antigen-driven T-cell turnover.
A mathematical model is developed to characterize the distribution of cell turnover rates within a population of T lymphocytes. Previous models of T-cell dynamics have assumed a constant uniform turnover rate; here we consider turnover in a cell pool subject to clonal proliferation in response to diverse and repeated antigenic stimulation. A basic framework is defined for T-cell proliferation in response to antigen, which explicitly describes the cell cycle during antigenic stimulation and subsequent cell division. The distribution of T-cell turnover rates is then calculated based on the history of random exposures to antigens. This distribution is found to be bimodal, with peaks in cell frequencies in the slow turnover (quiescent) and rapid turnover (activated) states. This distribution can be used to calculate the overall turnover for the cell pool, as well as individual contributions to turnover from quiescent and activated cells. The impact of heterogeneous turnover on the dynamics of CD4(+) T-cell infection by HIV is explored. We show that our model can resolve the paradox of high levels of viral replication occurring while only a small fraction of cells are infected
How effective is school-based deworming for the community-wide control of soil-transmitted helminths?
Background: The London Declaration on neglected tropical diseases was based in part on a new World Health Organization roadmap to “sustain, expand and extend drug access programmes to ensure the necessary supply of drugs and other interventions to help control by 2020”. Large drug donations from the pharmaceutical industry form the backbone to this aim, especially for soil-transmitted helminths (STHs) raising the question of how best to use these resources. Deworming for STHs is often targeted at school children because they are at greatest risk of morbidity and because it is remarkably cost-effective. However, the impact of school-based deworming on transmission in the wider community remains unclear.
Methods: We first estimate the proportion of parasites targeted by school-based deworming using demography, school enrolment, and data from a small number of example settings where age-specific intensity of infection (either worms or eggs) has been measured for all ages. We also use transmission models to investigate the potential impact of this coverage on transmission for different mixing scenarios.
Principal Findings: In the example settings <30% of the population are 5 to <15 years old. Combining this demography with the infection age-intensity profile we estimate that in one setting school children output as little as 15% of hookworm eggs, whereas in another setting they harbour up to 50% of Ascaris lumbricoides worms (the highest proportion of parasites for our examples). In addition, it is estimated that from 40–70% of these children are enrolled at school.
Conclusions: These estimates suggest that, whilst school-based programmes have many important benefits, the proportion of infective stages targeted by school-based deworming may be limited, particularly where hookworm predominates. We discuss the consequences for transmission for a range of scenarios, including when infective stages deposited by children are more likely to contribute to transmission than those from adults
Numerical Simulations of Full- Scale Corroded Pipe Tests with Combined Loading
The ANSI/ASME B31G guideline has been useful to pipeline operators in assessing the integrity of corroded line pipe. Because large safety margins have had to be incorporated, the guidelines can be excessively conservative, which in turn can force costly repairs and replacements that may not actually be necessary. On the other hand, because the current guidelines consider only pressure loading and neglect bending and axial compression, they could give nonconservative failure predictions when combined loading exists. Therefore, a study was initiated to develop a theoretically sound methodology for assessing the integrity of corroded line pipe subjected to combined loading. A key step in the successful application of this methodology is the development of a sophisticated three-dimensional finite element procedure that can accurately simulate full-scale pipe tests under conditions of combined loading. This paper describes thirteen full-scale failure tests on artificially corroded pipes subjected to simultaneous internal pressure, bending, and longitudinal compression and presents a detailed account of the finite element analysis procedure that was developed to simulate these tests numerically. Additional finite element analyses that were conducted to investigate the effect of key parameters on failure, and to expand the corroded pipe failure database, are also discussed. © 1997 by ASME
Mortality in patients with successful initial response to highly active antiretroviral therapy is still higher than in non-HIV-infected individuals.
Mortality in HIV-infected patients has decreased dramatically since the introduction of highly active antiretroviral therapy (HAART). We analyzed progression to death in a population of 3678 antiretroviral treatment-naive patients from the ATHENA national observational cohort from 24 weeks after the start of HAART. Mortality was compared with that in the general population in the Netherlands matched by age and gender. Only log-transformed CD4 cell count (hazard ratio [HR] = 0.50, 95% confidence interval [CI]: 0.40 to 0.61 per unit increase) and plasma viral load (HR = 0.30, 95% CI: 0.15 to 0.60, HIV RNA level or = 100,000 copies/mL) measured at 24 weeks and infection via intravenous drug use (IDU) (HR = 0.16, 95% CI: 0.10 to 0.26, non-IDU vs. IDU) were significantly associated with progression to death. For non-IDU patients with 600 x 10 CD4 cells/L and an HIV RNA level <100,000 copies/mL at 24 weeks, mortality was predicted to be 5.3 (95% CI: 3.5 to 8.4) and 10.4 (95% CI: 6.4 to 17.4) times higher than in the general population for 25-year-old men and women, respectively, and 1.15 (95% CI: 1.08 to 1.25) and 1.29 (95% CI: 1.16 to 1.50) times higher for 65-year-old men and women, respectively. Hence, mortality in HIV-infected patients with a good initial response to HAART is still higher than in the general population
HIV and fertility change in rural Zimbabwe
Fertility transition and HIV epidemics are currently running parallel in some sub-Saharan African populations. Interactions between the two at the individual and population levels could accentuate or moderate the resulting demographic trends. We review a number of mechanisms through which an HIV epidemic and responses to it can affect birth rates, through the biological and behavioural proximate determinants. Uninfected as well as infected people can be affected and many of the changes could have unintended consequences for fertility at the individual level. Results from a small-scale in-depth study in two rural areas of Zimbabwe are reviewed. These indicate that the local HIV epidemic has begun to influence the proximate determinants of fertility. If observed trends persist, a modest acceleration in the recent decline in birth rates seems plausible
Can chemotherapy alone eliminate the transmission of soil transmitted helminths?
Background
Amongst the world’s poorest populations, availability of anthelmintic treatments for the control of soil transmitted helminths (STH) by mass or targeted chemotherapy has increased dramatically in recent years. However, the design of community based treatment programmes to achieve the greatest impact on transmission is still open to debate. Questions include: who should be treated, how often should they be treated, how long should treatment be continued for?
Methods
Simulation and analysis of a dynamic transmission model and novel data analyses suggest refinements of the World Health Organization guidelines for the community based treatment of STH.
Results
This analysis shows that treatment levels and frequency must be much higher, and the breadth of coverage across age classes broader than is typically the current practice, if transmission is to be interrupted by mass chemotherapy alone.
Conclusions
When planning interventions to reduce transmission, rather than purely to reduce morbidity, current school-based interventions are unlikely to be enough to achieve the desired results
Mesoscopic molecular ions in Bose-Einstein condensates
We study the possible formation of large (mesoscopic) molecular ions in an
ultracold degenerate bosonic gas doped with charged particles (ions). We show
that the polarization potentials produced by the ionic impurities are capable
of capturing hundreds of atoms into loosely bound states. We describe the
spontaneous formation of these hollow molecular ions via phonon emission and
suggest an optical technique for coherent stimulated transitions of free atoms
into a specific bound state. These results open up new interesting
possibilities for manipulating tightly confined ensembles.Comment: 4 pages (two-columns), 2 figure
Radio structures of the nuclei of nearby Seyfert galaxies and the nature of the missing diffuse emission
We present archival high spatial resolution VLA and VLBA data of the nuclei
of seven of the nearest and brightest Seyfert galaxies in the Southern
Hemisphere. At VLA resolution (~0.1 arcsec), the nucleus of the Seyfert
galaxies is unresolved, with the exception of MCG-5-23-16 and NGC 7469 showing
a core-jet structure. Three Seyfert nuclei are surrounded by diffuse radio
emission related to star-forming regions. VLBA observations with parsec-scale
resolution pointed out that in MRK 1239 the nucleus is clearly resolved into
two components separated by ~30 pc, while the nucleus of NGC 3783 is
unresolved. Further comparison between VLA and VLBA data of these two sources
shows that the flux density at parsec scales is only 20% of that measured by
the VLA. This suggests that the radio emission is not concentrated in a single
central component, as in elliptical radio galaxies, and an additional
low-surface brightness component must be present. A comparison of Seyfert
nuclei with different radio spectra points out that the ``presence'' of
undetected flux on milli-arcsecond scale is common in steep-spectrum objects,
while in flat-spectrum objects essentially all the radio emission is recovered.
In the steep-spectrum objects, the nature of this ``missing'' flux is likely
due to non-thermal AGN-related radiation, perhaps from a jet that gets
disrupted in Seyfert galaxies because of the denser environment of their spiral
hosts.Comment: 13 pages, 9 figures; paper accepted for publication in MNRA
Hadley V. Baxendale: Still Crazy After All These Years? Panel Discussion
The following discussion about Hadley v. Baxendale took place on June 8, 2004, at the Conference on The Common Law of Contracts as a World Force in Two Ages of Revolution, held at the Oxstalls Campus of the University of Gloucestershire, in Gloucester, England. The Conference marked the 150th anniversary of Hadley. The following discussion was intended to be a free-ranging exploration of Hadley, its rule, its role in legal pedagogy, and its likely future
- …