924 research outputs found

    Improved turbine disk design to increase reliability of aircraft jet engines

    Get PDF
    An analytical study was conducted on a bore entry cooled turbine disk for the first stage of the JT8D-17 high pressure turbine which had the potential to improve disk life over existing design. The disk analysis included the consideration of transient and steady state temperature, blade loading, creep, low cycle fatigue, fracture mechanics and manufacturing flaws. The improvement in life of the bore entry cooled turbine disk was determined by comparing it with the existing disk made of both conventional and advanced (Astroloy) disk materials. The improvement in crack initiation life of the Astroloy bore entry cooled disk is 87% and 67% over the existing disk made of Waspaloy and Astroloy, respectively. Improvement in crack propagation life is 124% over the Waspaloy and 465% over the Astroloy disks. The available kinetic energies of disk fragments calculated for the three disks indicate a lower fragment energy level for the bore entry cooled turbine disk

    Nonlinear Realization and Weyl Scale Invariant p=2 Brane

    Full text link
    The action of Weyl scale invariant p=2 brane which breaks the target super Weyl scale symmetry in the N=1, D=4 superspace down to the lower dimensional Weyl symmetry W(1,2) is derived by the approach of nonlinear realization. The dual form action for the Weyl scale invariant supersymmetric D2 brane is also constructed. The interactions of localized matter fields on the brane with the Nambu-Goldstone fields associated with the breaking of the symmetries in the superspace and one spatial translation directions are obtained through the Cartan one-forms of the Coset structures. The covariant derivatives for the localized matter fields are also obtained by introducing Weyl gauge field as the compensating field corresponding to the local scale transformation on the brane world volume.Comment: 20 page

    Fluctuating initial conditions in heavy-ion collisions from the Glauber approach

    Full text link
    In the framework of the Glauber approach we analyze the shape parameters of the early-formed system and their event-by-event fluctuations. We test a variety of models: the conventional wounded nucleon model, a model admixing binary collisions to the wounded nucleons, a model with hot spots, as well as the hot-spot model where the deposition of energy occurs with a superimposed probability distribution. We look in detail at the so-called participant multipole moments, obtained by an averaging procedure where in each event the system is translated to its center of mass and aligned with the major principal axis of the ellipse of inertia. Quantitative comparisons indicate substantial relative effects for eccentricity in variants of Glauber models. On the other hand, the dependence of the scaled standard deviation of the participant eccentricity on the chosen model is weak. For all models the values range from about 0.5 for the central collisions to about 0.3-0.4 for peripheral collisions, both for the gold-gold and copper-copper collisions. They are dominated by statistics and change only by 10-15% from model to model. We provide an approximate analytic expansion for the multipole moments and their fluctuations given in terms of the fixed-axes moments. For central collisions and in the absence of correlations it gives the simple formula for the scaled standard deviation of the participant eccentricity: sqrt(4/pi-1). Similarly, we obtain expansions for the radial profiles of the multipole distributions. We investigate the relevance of the shape-fluctuation effects for jet quenching and find them important only for very central events. Finally, we argue how smooth hydro leads to the known result v_4 ~ v_2^2, and further to the prediction Delta v_4/v_4 = 2 Delta v_2/v_2.Comment: 20 pages, 15 figures, additions include comparison to the CGC result

    Superposition models and the multiplicity fluctuations in heavy ion collisions

    Full text link
    A class of simple superposition models based on the Glauber picture of multiple collisions is compared with the data on the centrality dependence of the multiplicity distributions in a central rapidity bin. We show how the results depend on the specific assumptions concerning the distributions in the number of participants and their relations to the distributions of the number of produced hadrons in various phase space bins. None of the versions of the model describes satisfactorily the centrality dependence of the scaled dispersion.Comment: 9 pages, 5 figures, a misprint in formula corrected, accepted for publication in EPJ

    Ultra-relativistic nuclear collisions: event shape engineering

    Get PDF
    The evolution of the system created in a high energy nuclear collision is very sensitive to the fluctuations in the initial geometry of the system. In this letter we show how one can utilize these large fluctuations to select events corresponding to a specific initial shape. Such an "event shape engineering" opens many new possibilities in quantitative test of the theory of high energy nuclear collisions and understanding the properties of high density hot QCD matter.Comment: 6 pages, 5 figure

    Hotter, Denser, Faster, Smaller...and Nearly-Perfect: What's the matter at RHIC?

    Get PDF
    The experimental and theoretical status of the ``near perfect fluid'' at RHIC is discussed. While the hydrodynamic paradigm for understanding collisions at RHIC is well-established, there remain many important open questions to address in order to understand its relevance and scope. It is also a crucial issue to understand how the early equilibration is achieved, requiring insight into the active degrees of freedom at early times.Comment: 10 Pages, 13 Figures, submitted to the proceedings of the Second Meeting of the APS Topical Group on Hadronic Physics, Nashville, TN, October 22-24, 200

    Trace initial interaction from final state observable in relativistic heavy ion collisions

    Full text link
    In order to trace the initial interaction in ultra-relativistic heavy ion collision in all azimuthal directions, two azimuthal multiplicity-correlation patterns -- neighboring and fixed-to-arbitrary angular-bin correlation patterns -- are suggested. From the simulation of Au + Au collisions at 200 GeV by using the Monte Carlo models RQMD with hadron re-scattering and AMPT with and without string melting, we observe that the correlation patterns change gradually from out-of-plane preferential one to in-plane preferential one when the centrality of collision shifts from central to peripheral, meanwhile the anisotropic collective flow v_2 keeps positive in all cases. This regularity is found to be model and collision energy independent. The physics behind the two opposite trends of correlation patterns, in particular, the presence of out-of-plane correlation patterns at RHIC energy, are discussed.Comment: 5pages, 4figure

    Comparing the energy spectra of ultra-high energy cosmic rays measured with EAS arrays

    Full text link
    The energy spectra of ultra-high energy cosmic rays (CRs) measured with giant extensive air shower (EAS) arrays exhibit discrepancies between the flux intensities and/or estimated CR energies exceeding experimental errors. The well-known intensity correction factor due to the dispersion of the measured quantity in the presence of a rapidly falling energy spectrum is insufficient to explain the divergence. Another source of systematic energy determination error is proposed concerning the charged particle density measured with the surface arrays, which arises due to simplifications (namely, the superposition approximation) in nucleus-nucleus interaction description applied to the shower modeling. Making use of the essential correction factors results in congruous CR energy spectra within experimental errors. Residual differences in the energy scales of giant arrays can be attributed to the actual overall accuracy of the EAS detection technique used. CR acceleration and propagation model simulations using the dip and ankle scenarios of the transition from galactic to extragalactic CR components are in agreement with the combined energy spectrum observed with EAS arrays.Comment: Accepted for publication in Ap

    Experimental study of local strong parity violation in relativistic nuclear collisions

    Full text link
    Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created in relativistic heavy ions collisions. These domains are predicted to lead to charge separation along the system orbital momentum of the system created in non-central collisions. Three-particle mixed harmonics azimuthal correlator is a \P even observable but directly sensitive to the charge separation effect. Using this observable to analyze Au+Au and Cu+Cu collisions at sNN=200\sqrt{s_{NN}}=200 and 62 GeV, STAR detects a signal consistent with several of the theoretical expectations. Possible contributions from effects not related to parity violation are studied with existing event generators, which fail to describe the data. Future directions in studying the effect are discussed.Comment: Proceedings, plenary invited talk at Quark Matter 2009 Conference, Knoxville, Tennessee. One reference added. Final versio
    • …
    corecore