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SUMMARY
 

Pratt & Whitney Aircraft conducted a nine month program, under NASA contract NAS3

18558, to study an advanced turbine disk design concept. The objectives of the "Improved 

Turbine Disk Design to Increase Reliability of Aircraft Jet Engines" program were to design 

a new turbine disk (referred to as the design disk) which could be a potential replacement for 

the existing first-stage turbine disk in the JTSD-17 commercial turbofan aircraft engine, 

and conduct the analysis necessary to calculate the improvement in disk life and overspeed 

capability resulting from the new design. 

The design disk studied under this program was a bore-entry-cooled bonded disk In the 
bore-entry-cooled concept, turbine b.ade cooling air is introduced at the disk bore, pumped 
radially through internal channels in the disk (one for each turbine blade) and exits to 
supply the blades at the blade attachment slot at the disk rim. The disk is fabricated in 
halves in which the cooling air channels are machined. The two disk halves are bonded 
together at the radial vanes between the cooling channels and at the disk rim using a 
transient liquid phase (TLP ) bond 

A simplified JT8D-1 7 engine flight cycle was used in the disk analysis which included con
sideration of transient and steady-state temperature, blade loading, creep, low cycle fatigue, 
fracture mechanics, and manufacturing flaws The design conditions and criteria that went 
into the design of the existing first-stage high pressure turbine disk for the JT8D-17 turbo
fan engine were used in the study of the design disk. The same analytical methods were used 
where applicable m the calculation of temperatures, stresses, and lives for the standard (Bill 
of Material), advanced standard (Bill of Material disk geometry with material changed from 
Waspaloy®to an advanced material, Astroloy)-and design disks. The design disk has no 
deleterious effect on the engine performance as compared to performance obtained with 
the existing turbine disk. The turbine blade airfoil, and the amount and temperature of the 
blade coolant were the same as used in the present JTSD-t7 eiigine The diametral growth due 
to creep of the design disk prior to failure does not exceed that of the standard disk, since the 
disks are not creep limited The limiting low cycle fatigue (LCF) crack initiation lives of 
the standard, advanced standard and design disks are 16,000, 18,000 and 30,000 cycles, 
respectively, and the crack propagation lives are 2900, 1150 and 6500 cycles, respectively. 
The improvement in life of the initially unflawed design disk over the initially unflawed 
standard and advanced standard disks is 93% and 90%, respectively, obtained by comparing 
the total of the number of cycles to crack initiation and the number of cycles during the 
crack propagation period. The limiting life location in all three disks is at the LCF crack 
initiation site of the disk. The increase in the crack propagation life for the LCF crack 
initiated flawed design disk is 465% over the advanced standard disk and 124% over the 
standard disk. The weight of the Astroloy design disk is the same as that of the existing 
Waspaloy ® standard disk. The overspeed capability, or burst margin, established by com
paring disk burst speed to the maximum speed of the engine for the standard, advanced 
standard and design disks are 35.6%, 35.9% and 33%, respectively; and they are all above 
the design minimum of 22%. 

Based on disk fracture experience, available kinetic energies of assumed disk fragments were 
calculated for the three disks. The results indicated smaller fragments and hence lower 
fragment energies for the design disk as compared to the standard and advanced standard 
disks. 



1.0 INTRODUCTION
 

1.1 BACKGROUND 

A disk burst is potentially the most catastrophic failure possible m an engine and thus disks 
are designed with overspeed capability and low cycle fatigue life as primary objectives The 
requirement for higher turbine stage work without additional stages has resulted in in
creased turbine blade tip speeds and higher turbine inlet temperatures in advanced commer
cial engines. This trend has resulted in significant increases in turbine stage disk rim loading 
and a more severe thermal environment, thereby making it more difficult to design turbine 
disks for specified life requirements meeting current weight goals Indications are that both 
turbine blade tip speeds and turbine inlet temperatures will continue to increase in advanced 
commercial engines as higher turbine work levels are achieved. Advanced turbine disk con
cepts are required to insure long life disks in commercial engines considering both crack ini
tiation and propagation, without resulting in severe weight, performance, or cost penalties. 

1.2 PROGRAM 

The goal of the "Improved Turbine Disk Design to Increase Reliability of Aircraft Jet 
Engines" program was to design an advanced concept turbine disk which could be a roten
tial replacement for a Bill-of-Material first-stage turbine disk in an existing commercial 
engine and which would have improved reliability with respect to the Bill-of-Material disk. 
P&WA's approach to achieve the program goal was to increase the cycle life of the turbine 
disk without increasing the disk weight, while maintaining engine performance. 

The Pratt & Whitney Aircraft JTSD-17 turbofan engine was selected as the study vehicle 
for the improved turbine disk life program. The -17 model is the latest and most advanced 
version of the JT8D engine which is the most widely used commercial jet engine, supplying 
power to 45 percent of the world's commercial fleet. The JT8D has been in commercial 
service for 10 years and over 71,000,000 total engine hours have been accumulated on over 
6,600 delivered engines. The current rate of use is approximately 1,000,000 hours and 
1,000,000 cycles per month. 

Over the years, engine model changes have been incorporated to increase thrust from the 
original 62,300 newtons (14,000 pounds) for the JT8D-1 to 71,200 newtons (16,000 pounds) 
for the JTSD-17. Turbine inlet temperatures have increased 1400 K (260°F). The use of 
air-cooled first-stage turbine blades was initiated with the JTSD-1 1model, and approxi
mately 1300 engines with air-cooled turbine blades have been delivered, of which 235 are 
the JT8D-17 model. Engineering development to further improve the JT8D will continue 
for the remainder of this decade. The disk concept studied in this program is applicable to 
this type of engine in service today and advanced commercial engines. 

Pratt & Whitney Aircraft conducted a 9 month analytical study of three first-stage turbine 
disks for the JT8D-17 engine. The first disk, called the "standard" disk, is the Bill-of-
Material (B/M) Waspaloy@ JT8D-17 first-stage high pressure turbine disk. The second disk, 
called the "advanced standard" disk, is a disk with a geometry identical to that of the B/M 
disk, but made of an advanced material, Astroloy The third disk is the "design" disk which 
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is a bore-entry-cooled, transient liquid phase (ref. 1) bonded disk, made of Astroloy. The 
reason for the three disks was to separate the life improvement in the design disk due to the 
advanced structural concept from the life improvement obtained through the use of an ad
vanced disk material. In the study, the same design conditions, criteria, and engine flight 
cycle were used for the three disks, and the same analytical methods were used where ap
plicable The disk analysis included considerations of transient and steady-state tempera
ture, blade loading, creep, low cycle fatigue, fracture mechanics, and manufactunng flaws 

The improvement m life of the design disk was compared to that of the standard and ad
vanced standard disks. Comparisons were made on the basis of cycles to crack initiation 
and over-speed capability for initially unflawed disks and on the basis of failure for ini
tially flawed disks. Available kinetic energies of disk fragments for the three disks were also 
calculated and compared. 

Ref. I Duvall, D S,Owczarski, W. A, and Paulonis, D r, "TLP® Bonding A New Method for Joining Heat Resistant 
Alloys," Welding Journal, April 1974, p. 203-214. 
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2.0 DISK DESIGN
 

The existing first-stage turbine disk, or standard disk, for the JT8D-17 turbofan engine is 
shown in Figure 1. Cooling of the high pressure turbine blades is accomplished using com
pressor discharge air delivered by a conventional tangential on-board injection (TOBI) sys
tem. The TOBI turbine rotor cooling air delivery system bleeds high compressor discharge 
air from the combustion chamber liner and projects this air onto the turbine disk. Work is 
extracted from the bleed air by trading the higher than required compressor discharge pres
sure for tangential velocity produced in the TOBI nozzles. That is, the igh tangential mo
mentum produced by TOBI nozzles does work on the conventional turbine disk in the same 
manner as an impulse turbine. The work accomplished on the disk reduces both the tempera
ture and pressure of the turbine rotor cooling air as it flows to the turbine airfoils. It is im
portant to note that with the TOBI delivery the cooling air is raised to a lugher pressure 
(i e., more compressor work) than required for turbine airfoil cooling and then pressure is 
lowered to the airfoil requirement by the removal of work (i e, TOBI work). Each of the 
80 turbine blades is then fed air through a drilled hole which delivers air from the point of 
on-board injection, through the disk rim to the bottom of the blade attachment slot below 
the blade. The opening of the angled cooling air hole in the disk rim broach results in an 
elliptical exit opening with high stress concentration and is the limiting low cycle fatigue 
life location in the standard disk. The advanced standard disk is identical to the standard 
disk except for a disk material change from Waspaloy @ to an advanced material, Astroloy. 
The design disk, which has the potential to replace the existing first-stage turbine disk in the 
JT8D-17 engine, is a bore-entry-cooled, bonded disk 

The bore-entry cooled disk concept entails bleeding the turbine cooling air inboard at the 
mid-compressor and transferring the air axially between the high and low turbine shafts to 
the bonded disk bore where it is pumped up through the disk in carefully designed internal 
channels, one for each turbine blade, and exits to supply the blade attachment slot at the 
disk rim as shown in Figure 2. 

Cooling air arriving at the airfoils in tis manner has not been pumped to higher pressures than 
required for turbine airfoil requirements. That is , compressor work above that required to 

reach turbine airfoil pressure has not been added to and removed from the cooling air Thus, 
cooling air arriving at the turbine airfoils in this manner requires less compressor work than 

conventional TOBI systems. The amount of heat picked up by the cooling air as it passes 

through the radial air channels in the design disk is small and thus no additional coolant is 

needed to cool the turbine blades at the disk rim. 

Tailoring the design of the blade cooling air radial pumping passages yields control of the disk 
radial thermal gradient even during engine transients. The disk is fabricated in halves in which 
the cooling air channels are machined The two disk halves are bonded together at the radial 
vanes between the cooling channels and at the disk rim using transient liquid phase (TLP®) 
bonding 
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2.1 DESIGN CONSIDERATIONS/CONDITIONS/CRITERIA 

The design conditions and criteria used in the design of the existing first-stage high pressure 
turbine disk for the JT8D-1 7 turbofan engine were also used for the design disk. The 
simplified JT8D-17 engine flight cycle used for the analysis of the standard, advanced stan
dard, and design disks is shown in Figure 3 in terms of altitude, inlet Mach number, turbine 
inlet temperature, and engine speed versus flight time. 

The design disk has no deleterious effect on the engine performance as compared to per
formance obtained with the existing Bill-of-Material standard disk Neither the turbine 
blade airfoil nor the amount or temperature of the blade coolant in the present'engine was 
changed. Provision was made in the disk design for channeling coolant to the blades The 
dliametral growth due to creep of the design disk prior to failure does not exceed that of the 
standard disk, since the disks are not creep limited The design properties of Astroloy, the 
advanced disk material used in the analysis of the advanced standard and design disks, are 
shown in Figure 4. The design properties of Waspaloy used in the analysis of the standard 
disk are shown in Figure 5 

The configuration of the design disk, in regard to provisions for supplying cooling air to the 
blades, which was required for the calculation of transient and steady-state radial and axial 
temperatures was accomplished by introducing turbine blade cooling air into the disk bore/ 
shaft annulus. Radial air passage channels in the design disk then pump the turbine cooling 
air from the disk bore to the blade supplying the required pressure at the disk nm (Figure 
2) To minimize the pressure losses associated with entrance, friction and turning experienced 
by the cooling air in the annular passage between the design disk bore and the engine shaft, 
the design disk bore radius was moved outward 0 25 cm (0 10 inch) relative to the standard 
and advanced standard designs. This set the minimum bore diameter of the design disk at 
12.0 cm (4.70 inches) versus 11 43 cm (4.50 inches) for the existing JTSD-17-first-stage high 
pressure turbine disk and the advanced standard disk The rim diameter of the design disk 
is the same as that in the standard and advanced standard disk since all three disks are de
signed to use the same turbine blade airfoil, blade attachment, disk broach slot and disk side
plate configuration The radial air passages necessary to achieve the required blade supply 
pressure at the design disk rim while having no deleterious effect on the engine performance 
are shown in Figure 6. 

2.2 DESIGN ANALYSIS 

In the calculation of temperatures, stresses, and lives for the standard, advanced standard, 
and design disks, the same analytical methods were used where applicable. The geometry 
of the design disk (Figure 6) was configured using both finite difference and finite element 
techniques The geometry of the advanced standard disk is identical to that of the standard 
disk. Figure 7 shows a schematic of the standard and advanced standard disks. 

The same thermal analysis was used to calculate transient and steady-state, radial and axial 
temperature gradients for the standard, advanced standard and design disks. P&WA's thermal 
analysis of a disk provides a complete and continuous temperature map throughout the entire 
flight cycle. This is required to determine steady state life limits associated with creep and 



burst as well as transient conditions which affect low cycle fatigue limits. Steady state limits 
are examined at critical flight conditions, i.e., the worst combination, of temperatures and 
rotor speeds. Transient temperatures are examined continuously over a flight cycle to pro
vide a complete time temperature relationship for the entire disk 

The thermal analysis is provided through the use of a three-dimensional transient finite ele
ment computer solution encompassing convection, conduction, and radiation. The environ
mental conditions influencing all external surfaces of the disk are defined as a function of 
time throughout the flight cycle and the metal temperatures along the disk surfaces and with
in selected interior nodes are generated by the computer deck. The boundary conditions 
are defined by correlations based on previous engine and rig experience. 

Four major computer programs are used to produce the analysis described above. The fol
lowing paragraphs describe each of these programs 

* 	 The first program is a generalized two-dimensional finite element break-up program 
which takes disk coordinates as input, and creates a fine mesh nodal break-up for 
thermal analysis. This deck is completely graphics interactive and makes use of 
digitizing equipment for generating coordinate input. The mesh fineness is variable 
throughout the part as accuracy requirements dictate. Disk three-dimensional 
effects must be input by hand 

* 	 The second program calculates all heat transfer coefficients and thermal boundary 
conditions required for thermal analysis throughout an entire engine flight cycle. 
Input consists of engine flowpath performance parameters, time response of bound
ary cooling air temperatures, and numerous types of heat transfer coefficient cor
relations. These heat transfer coefficient correlations are both analytical and experi
mental, and have been accumulated through years of research and through match
ing engine transient thermal data. 

* 	 The third program is a three-dimensional computer program which takes as input 
all information from the first two programs and yields all desired disk transient 
and steady state temperature profiles. This program calculates all conduction, con
vection, and radiation heat transfer by an implicit solution technique which incor
porates a dynamic time step expander and contractor which assures that the tran
sient time step is small enough to insure accuracy, but as large as possible to con
serve computer time. 

* 	 The fourth program is a computer deck which reads thermal files created by the 
temperature calculation program discussed above and arranges the data for input 
into the stress decks for structural analysis. 
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Figure 8 shows the finite element thermal models of the advanced standard and design disks 
and Figure 9 shows the rim and bore averaged surface temperature profiles of the disks for 
the design flight cycle. A review of the thermal analysis of the standard disk was conducted 
and the corresponding temperature profile of the disk is also included in Figure 9 for com
parison purposes. It is noted that the temperature distributions between the Waspaloy @ 

standard disk and the Astroloy advanced standard disk are similar. This is because the geom
etry and the cooling scheme of the two disks are the same and the difference in thermal con
ductivity and specific heat properties of Waspaloy @ and Astroloy are insignificant within the 
temperature range the disks operate The design disk temperature profile, however, shows 
a significant difference the rim and bore temperature profiles of the design disk, during 
engine ascent and descent in the flight cycle, never crossed each other as noted in the tem
perature profiles of the standard and advanced standard disks (Figure 9) The radial and 
axial temperature distributions are shown in Figure 10 for the standard and advanced stand
ard disks and in Figure 11 for the design disk at pertinent points in the flight cycle. The 
elimination of the reverse temperature gradient (bore hotter than rm) during engine ascent 
and descent, and the reduction in the direct disk bore to rim temperature gradient (rim hot
ter than bore illustrated in Figure 10 and 11) are the results of the bore-entry-cooled, design 
disk concept 

The stress analysis of the standard disk was reviewed, and the analysis of the advanced stand
ard and design disks, as regards the determination of nominal disk stresses, was performed 
using an elastic-plastic disk stress analysis. 

The elastic-plastic analysis used for geneial disk stress analysis and disk radial growth of all 
commercial compressor and turbine disks is based on a finite difference technique where the 
disk is modeled as a series of connected, concentric rings of variable ring width and thickness. 
The plastic capability is achieved by iteration from an initial elastic solution, bringing each 
rng to its proper location on the material stress-strain curve. The iteration procedure is gen
erally convergent for practically all time points in the flight cycle histo ry because of the con
strained nature of disk bore plasticity. Stress analysis and growth data are generated for many, 
typically 100, time points within a flight cycle and include the effects of plasticity within the 
disk bore. Loading data for this disk program includes the previously computed thermal 
gradients and the inertial loads at the given rotational speed due to blade and attachment pull 
plus disk spacer, hub, sideplate, and seal loads Some of the loading data is externally sup
plied, the remainder is generated internally. The elastic-plastic analysis uses simple shell 
elements that can be used to compute radial disk loads due to seal appendages, the analysis 
generates rim loads from specified geometrical parameters. 

The elastic-plastic stress analysis outputs the flight cycle time history of the local nomnmal 
stresses and strains, radial disk growth, disk burst margin, local values of stress concentrations, 
and LCF and fracture mechanics lifetime data The LCF and fracture mechanics analyses are 
described in Section 3 of this report. The stress concentration factors are derived by curve 
fit routines in the analysis for many classes of stress risers, the remainder are supplied as data 
from more refined elastic stress analysis described below 
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In the analysis of the advanced standard and design disks, the elastic-plastic analysis searched 
the design flight cycle for limiting stress points for the two disks and was consistent with the 
analysis performed on the standard disk. The stress analysis included effects of blade load, 
blade-to-disk attachment, thermal stresses, plasticity, acceleration and deceleration transients 
and other conditions that are considered in current disk design practice. The same analytical 
techniques were used in the analysis of the three disks where applicable. Figure 12 shows 
the nominal disk rim and bore stresses of the standard, advanced standard, and design disk. 
It is noted that the design disk rim has the least extensive stress cycling (stress fluctuation), 
within one flight cycle, of the three disks. 

In the design disk, the centrifugal rnm load on the disk is reacted by the bonded bore halves. 
Since the reactions are not in the same plane as the disk rim load, two couples (moment loads) 
are introduced in the bonded disk which cause the bore halves to roll toward each other in
ducing high axal compressive stresses in the disk radial vanes at the ID location. To reduce 
the local high axial compressive stresses, alternate radial vanes were extended to the disk bore 
radius as shown in Figure 6. Mixed body of revolution and plane stress finite element tech
niques were used m the determination of the axial vane stresses. The fimte element analysis 
utilizes general quadrilateral plate or axisymmetric elements, assembled from constant strain 
triangles. In the analysis, the design disk structure was modeled using combined plate and 
axisymmetrical elements, the plate elements were used to model the disk lugs and radial 
vanes, the axisymmetrical elements were used to model the continuous axisymmetrical 
hoop material. Figure 13 shows a schematic of the finite element model of the design disk. 
The resulting axial stress distribution at the bond surface of the design disk is shown in 
Figure 14. The maximum bond tensile stress is 1.52 x 108 N/cm 2 (22 ksi) and the maxi
mum bond compressive stress is -7.25 x 10' N/m2 (-105.2 ksi) which is below the 0 2% 
yield strength of the materal. Both of these stresses occur at 56 seconds into theflight cycle. 

The same finite element analysis was used in the determination of stress concentration factors 
(SCF) at pertinent locations in the design disk, such as at the radial cooling air channel en
trance and exit locations. Figures 15 and 16 show the finite element models of the design 
disk broach slot and cooling air channel cross-section, respectively, at the disk rim The finite 
element model of the cooling air channel cross-section (Figure 16) is typical of analytical 
models of the channel cross-section at the various disk radial locations such as at the disk web 
and bore. The pertinent SCF's, the limiting concentrated stresses and their corresponding 
locations in the standard, advanced standard and design disks are summarized in Table I. The 
limiting flight cycle time points associated with these stress occurrences are also included m 
the same table. These time points were the limiting flight cycle time points used in the crack 
initiation analysis. 

Based on the thermal and stress analysis that had been conductdd on the standard disk, creep 
was found not to be a limiting design consideration and this was also true for the advanced 
standard and design disks The advanced standard and design disks use the same blades and 
blade-to-disk attachments as in the existing standard disk. The disk attachments are subjected 
to the same centrifugal loads and, hence, the same attachment stresses are expected m all 
three disks. Figure 17 shows the attachment stresses for the three disks at the maxinum 
engine take-off speed (11870 rpm) 
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TABLE I 

LIMITING CONCENTRATED STRESS & FLIGHT CYCLE TIME POINT 
SUMMARY OF STANDARD, ADVANCED STANDARD & DESIGN DISKS 

Disk cm 

Location 
Radius 

Inches Remarks 

Stress
Concen-
tration 
Factor 

Limiting Stress 

108 N/m 2 ksi 
Stress 
Type 

Limiting
Flight Cycle 
Time Point, 
Seconds 

Standard 
Disk 

21.6 8 51 Rim Cooling 
Air Exit Hole 

345 10.4 151.9 Hoop 874.0 

Advanced 
Standard 
Disk 

21.6 8 51 Rim Cooling 
Air Exit Hole 

3.45 10.3 149 8 Hoop 883.0 

Design 
Disk 

21 6 8.51 Rim Cooling 
Air Channel 
Exit 

3.13 9.8 142.0 Hoop 7.5 

Design 
Disk 

17.8 7 0 Web Maximum 
Radial Stress 
Location 

2 24 9.46 137 6 Hoop 300.25 

Design 
Disk 

9.2 3.60 Short Vane 
1.D 

1.72 9 85 143.2 Hoop 56.0 

Design 
Disk 

6 0 2.35 Bore Cooling 
Air Channel 
Entrance 

1.52 

1.2 

10.2 

-8.75 

1480 

-127.6 

Hoop 

Axial 

225.25 

560 



3.0 DISK FAILURE ANALYSIS
 

Low cycle fatigue and fracture mechanics theories were used in the failure analysis of the 
standard, advanced standard, and design disks. The overspeed capabilities of the three disks 
were also determined The total disk life was calculated based on the sum of the crack ini
tiation and crack propagation periods for each of the three disks Further analysis of the 
design disk was conducted to increase its life. A fragment energy analysis was performed to 
calculate the total kinetic energies of potential disk fragments from the standard, advanced 
standard, and design disks. 

3.1 CRACK INITIATION ANALYSIS 

The crack initiation analysis for the three disks was based on the simplified JT8D- 17 engine 
flight cycle (Figure 3) and on low cycle fatigue (LCF) theory P&WA's LCF life prediction 
system is an automated procedure which utilizes loading taken directly from the flight cycle 
history of the engine, elastro-plastic stress analysis utilizing the analysis tools described in 
Section 2.0, and the mechanical properties data base for the material system. LCF life is 
defined to be the generation of a .079 cm (1/32 inch) surface length crack from unflawed 
material based on a probability of one occurrence in one thousand disks. 

The flight cycle history for an engine component such as the first stage turbine disk includes 
rotational speed and component temperature distribution. The nominal stress distribution 
is computed using the two-dimensional finite element and the elasto-plastic disk stress analy
sis programs described previously. Local values of stress concentration factors are then com
puted at each geometrical stress riser (e.g , blade attachment lug) using a two-dimensional 
finite element analysis. 

For a given flight cycle, the nominal stress history at each stress concentration location is 
determined. The stress history for an engine flight cycle generally consists of a major stress 
cycle together with several minor stress cycles (a cycle is a complete reversal of the stress
strain values as shown in Figure 18). The strain range for the major and minor cycles are 
computed for each flight cycle by multiplying the nominal stress (strain) values by the com
puted stress (strain) concentration factor. The LCF life prediction analysis estimates the 
LCF life at each stress concentration location using an empirical function to determine the 
damage for the cycles defined by strain range and mean stress; the empirical function includes 
the effects of temperature, hold time, surface finish, and additional factors derived from ex
tensive hardware experience. The cumulative effects of major and minor cycles are added 
using the standard linear cumulative damage rule (Miner's rule) Correlation of the LCF life 
prediction analysis results with engine-experience is good; furthermore, it is reasonably con
servative as shown in Figure 19. 

The LCF life summary of the three disks, Figure 20, shows that both the standard and ad
vanced standard disks are LCF life limited at the disk rim cooling air hole exit location with 
16,000 cycles and 18,000 cycles, respectively. The preliminary design disk is LCF life limited 
(23,000 cycles) at the disk bore cooling-air channel entrance location as well as at the disk 
sideplate snap location. 
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The overspeed capability, or burst margin, of the advanced standard and design disks was 
calculated using the same analytical procedure employed in the standard JT8D-17 first-stage 
Igh pressure turbine disk design Accurate means of predicting the burst speed of com

pressor and turbine disks have been developed through an extensive program which included 
the evaluation of the basic tensile properties (yield and ultimate strengths) of disk materials, 
the calculation of disk stresses, and the correlation of these stresses to the strength of the 
material through actual burst tests. It has been possible through actual whirl pit tests of 
approximately 300 disks to determine a correlation between the calculated average circum
ferential stress at burst and the ultimate strength of the material. Such a correlation has 
provided a consistent ability to predict the minimum burst speed of compressor and turbine 
disks. The burst strength of the disk has been related to the mminimum ultimate strength of 
the material at the average disk temperatures. In all cases, minimum disk dimensions and 
maximum spacer and rim loads have been utilized and no consideration given to whatever 
restraining effects spacers and hubs-might offer the disk. Burst margins, established by 
comparing disk burst speeds to the maximum, or redline, speed of the engine for the stan
dard, advanced standard and preliminary design disks are 35.6%, 35.9% and 28.5% respec
tively, and they are all above the design minimum of 22%. 

3.2 	 CRACK PROPAGATION ANALYSIS 

The crack propagation analysis for the standard, advanced standard, and design disks was 
based on assumed orientation, size, shape, and location of initial flaws for three critical lo
cations, shown in Figure 21, in each of the three disks using fracture mechanics theory. 

The fracture mechanics analysis for predicting crack growth under flight cycle loading is 
broken into two classes of problems; growth of a subsurface crack from an inherent material 
defect and, continued growth of a surface crack initiated by LCF loading of unflawed ma
terial as descnbed in Section 3.1. In both cases of crack growth, the empirical elastic frac
ture mechanics correlation of the crack growth rate (daldn) and the crack tip stress intensity 
factor for each stress cycle (AK) is numerically integrated to determine crack size as a func
tion of cycle numbers. Use of the "influence function" method (ref. 2) in the fracture 
mechanics analysis for evaluating crack tip stress intensity fields fully accounts for local stress 
variation at the crack due to geometry changes as the crack grows. The analysis assumes the 
magnitude and distribution of the forces and stresses in the gross structure are not influenced 
by the crack itself. 

The subsurface crack growth analysis is based on the inherent material defect size, the local 
nominal stress cycle and mean stress level, the local temperature, and the necessary material 
parameters. These material parameters include the threshold value of stress intensity factor, 
the fracture toughness, and the empirical values of crack growth rate as a function of tem
perature and the ratio of maximum to minimum stress for a stress cycle. The subsurface 

(2)' 	 Cruse, T. A. and Besuner, P. M., "Residual Life Prediction for Surface Cracksin Complex Structural Details," 
Journal of Aircraft, Vol 12, No 4, April, 1975, pp. 369-375. 
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crack stress intensity factor is computed using the theoretical results for a buried flaw, cir
cular in shape, and oriented transverse to the maximum normal stress component. The sub
surface crack size is given a statistical variation which may be truncated for cracks larger 
than a specified mmnum inspection level; the material parameters are also fit to statistical 
functions to account for real material variability. The fracture mechanics life (cycles to 
grow a crack to the critical crack size for the local stress cycle) is obtained using an analysis 
which combines the statistics of flaw size, material properties, and the actual load cycle. 
The resulting life is based on the probability of one failure in ten thousand disks. 

The major difference between the subsurface crack and surface crack problems is the need 
to account for the effects of both crack size and shape together with the stress gradients 
inherent to notched geometries. Reference 2 describes the techniques used for simulating 
surface crack growth including these complexities, numerical modeling of surface cracks is 
accomplished using the boundary-integral equation techmque. 

The boundary-integral equation method of stress analysis differs significantly from finite 
element stress analysis. A set of constraint equations relating boundary tractions to bound
ary displacements is solved numerically; the technique requires that only the boundary of 
the geometry be modeled. Thus the numerical problem of modeling the interior, as done 
by the finite element method, is avoided, resulting in better resolution of high stress/strain 
gradients; further, problem size and computer run time are significantly reduced relative to 
comparable finite element results. 

The types of flaws considered in this study can be divided into three categories 

* Surface flaws located in the LCF initiation sites at the cooling hole exit of the 
standard and advanced standard disks and at the cooling channel entrance to the 
design disk (Figure 22) 

* Manufacturing flaws buried in the bores of all three disks. 

* Manufacturing flaws in the disk webs including buried flaws in the web of the 
standard and advanced standard disks, and a flaw at the TLP®bond line of the 
design disk, propagating from a sharp comer created by a misalignment of the 
two disk halves during fabrication (Figure 23). 

The crack growth rates used in the fracture mechanics life prediction analysis of the three 
disks are based on 700'K (800'F) crack growth data of conventionally forged Waspaloy @ 

and Astroloy. The 700'K (800'F) crack growth data was used in the analysis because of 
limited data available for temperatures between room temperature and 700'K (800F) Use 
of 7000 K (800F) data is conservative since 700°K (800F) crack growth rates tend to be 
greater than room temperature rates for these materials, and the temperature rises above this 
level only at time points in the flight cycle having low stress (Table II). 

The stresses and temperatures used in the crack propagation analysis of the three disks were 
obtained from the results of the flight cycle analysis shown in Figures 9 and 12. The critical 
time points from the flight cycle analysis and the corresponding nominal stresses and tem
peratures are summarized in Table II. At the time points of maximum stress (the points used 
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in the crack growth analyses), the temperatures are all below 7000 K (800'F), which is the 
baseline temperature used for the generation of the crack growth rate data Temperatures 
exceeding 700'K (800F) are seen only m conjunction with stresses considerably less than 
the maximum stress value. Local stress profiles and stress concentration factors from finite 
difference and finite element analysis were included in the crack propagation analyses of 
the LCF-initiated cracks in the three disks. 

In the standard and advanced standard disks, a substantial subcycle in the hoop stress oc
curred at the rim (Figure 12). In the fracture mechanics analysis, this subcycle was treated 
as being completely equivalent to the major cycle because the value of maximum stress of 
the minor cycle is within 10% of maximum stress in the major cycle, and the difference m 
temperature at the two points could not be accounted for analytically since only one tem
perature, 700'K (800°F), crack growth data was used. Furthermore, testing on nickel ma
terials shows no significant dwell effects at temperatures considered Therefore, the crack 
propagation lives quoted for the cooling channel exit locations for the standard and ad
vanced standard disks account for two load cycles per flight. 

The crack initiation life as calculated by P&WA's LCF life prediction system is defined to 
be the generation of a 0.079 cm (1/32 inch) surface crack. This surface flaw was assumed 
to be semi-elliptical in shape and the orientation of the flaw was such that the plane con
taining the crack front was normal to the local stress field. The growth of this surface flaw 
in the fracture mechanics analysis was assumed to propagate in an infinite width structure. 
This assumption is valid for a surface flaw depth less than or equal to three-fourths of the 
structural finite width, based on P&WA's rn-house experience. The initial ratio of crack 
depth to crack surface length (a/c) for the 0.079 cm (1/32 inch) surface crack was obtained 
by analytically "growing" to the 0.079 cm (1/32 inch) size from a 0.01 cm (0.004 inch) 
semi-circular crack. Local stress profiles determine the aspect ratio. The initial ratio of 
crack depth to crack surface length (a/c) is 0.48 for the surface flaw at the cooling hole 
exit location of the standard and advanced standard disks (Figure 22). The crack propaga
tion lives of this flaw in the standard and advanced standard disks are 2900 and 1150 cycles, 
respectively; and the corresponding critical flaw size for the two disks is shown in Figure 24. 
The initial crack depth to crack length aspect ratio of the preliminary design disk is 0.44 
(Figure 22) and the critical flaw size shown in Figure 25, is limited at 4900 cycles The 
critical flaw depths for all three disks are within the size limits of the analytical assumptions 
noted above. 

In the manufacturing of the standard, advanced standard, and design disks, the disks undergo 
a forging process prior to machining. Because of the forging process, intrinsic material flaws 
in the disk are assumed to become preferentially oriented parallel to the disk forging flow or 
normal to the sonic inspection direction. Therefore, the assumed subsurface material flaws 
(Figure 21) of the three disks are based on a sonically detectable, penny-shaped, flat-bottomed 
buried flaw of 0.119 cm (0.047 inch) diameter. The crack propagation life prediction system 
then relates the sonic inspection and material data to a corresponding penny-shaped, buried, 
flat-bottomed hole normal to the maximum stress direction to determine the crack propaga
tion life of the sonically identified 0.119 cm (0.047 inch) diameter flaw. 

The buried manufacturing flaws in the bores of the standard, advanced standard, and design 
disks were analyzed using the maximum hoop stress in the individual disk bore. The calcula
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TABLE II
 

CRITICAL TIME POINTS IN FLIGHT CYCLE
 

Time Temperature Stress 
Location Sec. 0 K (OF) 108 N/m 2 (ksi) Direction 

1. Design Disk 

1. 	 Cooling channel a) 30025 661 (730) 6.73 (97.6) Hoop 
entrance b) 150.25 670 (746) 6.59 (95.6) Hoop 

2 TLP®bond 	 a) 5600 666 (740) 1 52 (22.0) Axial 
b) 150.25 700 (800) <1.52 (<22 0) Axial 

3 Bore 	 a) 300 25 661 (730) 6.73 (97.6) Hoop 
b) 150 25 670 (746) 6 59 (95 6) Hoop 

1I. Advanced Standard Disk 

1. Cooling channel a) 152800 522 (480) 3.06 (444) Hoop 
exit 	 b) 75 25 755 (900) 0.38 ( 5.5) Hoop 

c) 7.50 461 (370) 282 (409) Hoop 

2 Web a) 7000 650 (710) 5.76 (83.6) Radial 
b) 300 25 716 (830) 461 (66.9) Radial 

3 Bore a) 430.00 695 (792) 6 18 (89 7) Hoop 

b) 7000 708 (814) 3.77 (54.7) Hoop 

III Standard Disk 

1 	 Cooling channel a) 1519.75 528 (490) 3 10 (449) Hoop 
b) 73 00 755 (900) 0 24 ( 3 5) Hoop 
c) 750 461 (370) 290 (420) Hoop 

2. 	 Web a) 70.00 650 (710) 5 86 (85.0) Radial 
b) 298.00 716 (830) 471 (68.3) Radial 

3. 	 Bore a) 43000 695 (792) 6 21 (90 0) Hoop 
b) 70.00 710 (818) 3 59 (52.0) Hoop 

a) Point of maximum stress 
b) Point of maximum temperature 
c) Stress subcycle (Figure 12) 

-1!1RODUCIBLITY OF THDI
 

ORIGINAL PAGE IS POOR
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ted crack growth lives for the standard, advanced standards, and design disks are 65,000, 
39,000, and 26,000 cycles, respectively, and the corresponding critical flaw diameters are 
2.46, 2 46, and 2 11 cm (0.97, 0.97, and 0.83 inches), respectively. 

The manufacturing flaws in the webs of the standard and advanced standard disks, under 
maximum radial stress, were calculated to be 97,000 cycles and 59,000 cycles, respectively. 
The corresponding critical flaw diameter for both disks at this location is 1 80 cm (0.71 
inches) before rapid fracture. 

Due to manufacturing tolerance buildup in the design disk, there can be a misalignment at 
the TLP@ bond surface between the cooling channel vanes of the two disk halves creating 
a sharp comer at the bond line (Figure 23). It was assumed that an initial crack would occur 
upon the first load cycle because of the high local stress intensity at the sharp corner although 
the normal tensile stress in the bond is low, 1.52 x 108 N/m 2 (22 ksi). This crack at the 
TLP® bond line (Figure 23) of the design disk was analyzed as a two-dimensional crack The 
geometry is such that the problem does not have an exact solution, therefore, a graph of stress 
intensity factor (AK) vs. crack length was determined, Figure 26 This analysis shows that 
the value of AK is above the threshold value only for very short crack lengths. For only 
slightly longer crack lengths, the value of AK drops well below threshold. This-means that 
the crack cannot grow, since AKTHRESHOLD is defined as that value of AK below which no 
growth can take place. Therefore, infinite life was found for this location. 

3.3 DISK LIFE IMPROVEMENT 

Results of the crack initiation analysis on the design disk indicated that the liniting LCF loca-' 
tions were at the disk bore cooling-air channel entrance and at the disk sideplate snap, and 
the-life was 23,000 cycles at each location. In order to improve the LCF life of the design 
disk, design modifications were made and a re-analysis of the disk was performed In the re
analysis, the original design disk temperature distribution was used because the small tem
perature variation resulting from the design changes would have an insigificant effect on the 
disk stresses.
 

To improve the life of the disk bore, both hoop and axial stresses had to be reduced. A re
duction in hoop stress was accomplished by increasing the live bore thickness from 6.35 to 
7.19 cm (2.5 to 2.83 inches) (13% increase). However, this increase had an adverse effect 
on the axial stress at the cooling channel vane ID. Under a centrifugal field, the two bore 
halves have a tendency to roll toward each other because of the induced moment load in 
the disk caused by the offset between the centrifugal rim load on the disk and reactions of 
the bore halves. The rolling movement was aggravated by the bore thickness increase and 
induced a higher axial stress at the vane ID. To relieve the high compressive local stress, the 
minimum radial vane thickness was increased from 0.178 to 0.203 cm (0.070 to-0.080 inches). 
This was accomplished by specifying tighter tolerances on the cooling air channel dimensions 
at the disk bore. The improved disk bore cooling-air channel entrance LCF life is 30,000 
cycles. 
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The weight of the original design disk was 1.36 kg (3 lbs.) lighter-than the standard B/M 
disk. With a 13% increase in bore material, the weight of the improved design disk equals 
that of the standard BM disk. This design change would not yield significant, if any, life 
improvement for the standard and the advanced standard disks. A review of the tempera
ture versus flight time profiles of the standard, advanced standard, and design disks at their 
respective bores and rims, shown in Figure 9, indicated that the rim and bore temperature 
profiles of the design disk, during engine descent in the flight cycle, never crossed each other 
as did the temperature profiles of the standard and advanced standard disks. The elimina
tion of the reverse temperature gradient (bore hotter than rim) during flight descent is the 
reason that in the design disk the addition of bore material to the disk reduces the circumfer
ential bore stresses while not aggravating the nm stresses of the disk. In the standard and ad
vanced standard disks, the addition of bore material increases the disk bore mass which in
creases the existing reverse temperature gradients in the two disks by further delaying the 
thermal response of the disk bore with respect to the rim during engine flight descent. This 
increased reverse temperature gradient causes the hotter bore to induce more strain on the 
cooler rim resulting in an increased circumferential stress field at the rm where the standard 
and advanced standard disks were already LCF limited. / 

To further improve the LCF life of the design disk sideplate snap, the original sideplate snap 
was redesigned to allow for a smoother local stress flow and hence reduced stress concentra
tion and improved LCF life. The critical stress in the sideplate snap is 9.20 x 10' N/n 2 

(133.3 ksi). The limiting LCF crack initiation life for the redesigned'sideplate snap configu
ration is 33,000 cycles, a 43% improvement over the original design life. Figure 27 shows a 
drawing of the improved design disk. A summary of the limiting LCF crack initiation lives 
of the disk before and after the design change is shown in Table III. The burst margin in 
the improved design disk is 33%. Figure 28 shows the LCF crack initiation life summary 
of the standard, advanced standard and improved design disks. 

The crack propagation analysis for the improved design disk was done in a manner parallel
ing that discussed in the previous section for the original design disk. Table IV compares the 
life predictions obtained for the improved design disk with those previously calculated for 
the original design disk. At the cooling channel entrance location, the crack propagation life 
of the improved design disk is 6,500 cycles which is 32% greater than the original design. 
Both disks show the same crack propagation life (> l05 cycles) at the TLP®bond line. 
Figure 29 shows the critical crack size of the surface flaw at the cooling channel entrance 
location of the improved design disk. Figure 30 shows the crack propagation life summary 
of the standard, advanced standard and improved design disks. 

The improvement in life of the initially flawed improved design disk over the initially flawed 
standard and advanced standard disks is 124% and 465%, respectively, obtained by companing 
the number of cycles to failure during the crack propagation perod (Table V). The improve
ment in life of the initially unflawed design disk over the initially unflawed standard and ad
vanced standard disks (93% and 90%, respectively) was obtained by comparing the totals of the 
number of cycles to crack initiation and the number of cycles during the crack propagation 
period (Table VI). A normalized weight comparison between the standard, advanced stand
ard, and improved design disk is also included in Table VI. 

16 



TABLE III 

LCF LIFE SUMMARY OF THE STANDARD, ADVANCED 
STANDARD, DESIGN AND IMPROVED DESIGN DISKS 

Disk 
Identification 

Disk 
Location 

LCF Crack 
Initiation 
Life Cycles 

Original Design 
Improved 

Design 

Standard Disk Rim Cooling 
Air Hole 
Exit 

16,000 

Advanced 
Standard Disk 

Rim Cooling 
Air Hole 
Exit 

18,000 

Design-Disk Rim Cooling 
Air Channel 
Exit 

30,000 35,000 

Design Disk Bore Cooling
Air Channel 
Entrance 

23,000 30,000 

Design Disk Sideplate 
Snap 

23,000 33,000 
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TABLE IV
 

SUMMARY OF FRACTURE MECHANICS LIFE PREDICTIONS
 

1) Surface Flaws at LCF Initiation Sites 

a) Design disk cooling channel entrance 

b) Advanced standard disk cooling channel 
exit 

c) Standard disk cooling channel exit 

2) Manufacturing Flaws at Disk Webs 

a) Design disk TLP®bond line 

b) Advanced standard disk web 

c) Standard disk web 

3) Manufacturing Flaws at Disk Bores 

a) Design disk bore 

b) Advanced standard disk bore 

c) Standard disk bore 

No. of Cycles 

Original Design Improved Design 

4,900 6,500 

1,150 

2,900 

>105 > 105 

59,000 

97,000 

26,000 37,000 

39,000 

65,000 

18 



TABLE V
 

CRACK PROPAGATION LIFE IMPROVEMENT OF DESIGN DISK
 

Disk 
Identification 

Improved 
Design Disk 

Advanced 
Standard Disk 

Standard Disk 

Crack Propagation 
Life (Cycles) 

6,500 

1,150 

2,900 

TABLE VI 

Life 
Improvement 

465% Over Advanced 
Standard Disk 
124% Over Standard 
Disk 

TOTAL LIFE IMPROVEMENT OF DESIGN DISK
 

Crack Crack 
Initiation Propagation 

Disk Life Life Total life 
Identification (Cycles) (Cycles) (Cycles) 

Improved 
Design 
Disk 30,000 6,500 36,500 

Advanced 
Standard 
Disk 18,000 1,150 19,150 

Standard 
Disk 16,000 2,900 18,900 

Life 
Improvement 

Percent 
Weight 

90% Over 
Advanced 
Standard 
Disk 
93% Over 
Standard 
Disk 

100 

1.3% Over 
Standard 
Disk 96' 

Base Line 100 
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3.4 FRAGMENT ENERGY ANALYSIS 

Based on P&WA's burst experience, the failure patterns shown in Figures 31 and 32 are re
presentative of how the three disks may fail due to crack progression from an LCF initiated 
flaw or from a buried material flaw. The fragment patterns, used for the fragment energy 
calculations, include three fragment patterns (size and number of fragments) for each of 
the three cracks analyzed in the standard, advanced standard, and design disks (a total of 27 
fragment patterns). 

P&WA's experience would not indicate any significant difference in burst patterns between 
the standard (Waspaloyf@) and the advanced standard (Astroloy) disks. Also, P&WA's ex
perience would not predict a significantly different fracture pattern for the design disk ex
cept that during the actual breakup, the two halves may separate and fracture into two dif
ferent failure patterns. 

The basic fracture mechanism for each of the assumed flaws (Figure 21) in each of the three 
disks is similar. A crack (or flaw) will progress with the principal stress field (tangential or 
radial) to a cntical size when the disk will experience rapid fracture. During the course of 
crack growth, a crack can change direction, branch out into two or more cracks, induce 
other cracks or progress in one direction until it splits the disk, subject to the load redistribu
tion in the damaged disk As a crack progresses, the centrifugal loads in the disk will cause 
the fracture surfaces to separate, transferring the load away from the failure origin. The 
transferring of the load away from the initial crack will cause cracks to form in other high 
stress locations due to tensile overload Significant progression of two or more of these cracks 
simultaneously will alter the stress fields in the disk in such a way that the actual failure pat
tern encompasses two or more fragments Figure 31 shows three possible disk fragment pat
terns which can result from a surface flaw at an LCF initiation site and the three possible disk 
fragment patterns which can result from a buried material flaw in the disk web and m the 
disk bore in the standard and advanced standard disks 

The three major locations in the design disk where crack growth and eventual disk fragmen
tation could occur were also considered. Growth of a radial crack along the bond line due to 
manufacturing misahgnments may lead to separation of a single vane of the design disk This 
separation is not critical to engine operation or the engine overspeed burst margin be6ause of 
the great redundancy of the vane load paths and the fact that the bond surfaces are lowly 
stressed. Thus, the effect of redistribution and unsymmetry of load due to vane debonding 
is minimal and was not considered. Standard routine inspection of the disk is expected to 
locate such vane "debond" cracks. For these reasons, vane "debond" cracking is in a crack 
tolerant mode and no subsequent disk fragmentation can originate from this mode of crack
ing. However, these debond cracks can influence the fragment patterns and sizes of an LCF 
imtiated bore crack or a buried material flaw initiated crack by allowing fractured disk frag
ments to separate at the bond line. Figure 32 shows the possible fragment patterns which 
can result from the influence of this manufacturing flaw. 

The two other key sites of fatigue crack growth in the design disk are the crack growth in the 
bore associated with the growth of a buried material flaw and a surface flaw at the cooling
air entrance channel. In the presence of the much higher nominal disk hoop stresses of the 
bore, both modes of disk crack growth will tend to be critical for the load carrying capability 
of the disk as they will grow transverse to the disk hoop stress and are not likely to stop grow
mg prior to reaching instability. 
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The design disk concept was assumed to have the capability of restricting these two modes 
of crack growth to one-half of the design disk. This restriction results from the presence of 
the radial cooling channels, as crack growth is expected to occur between the channel and 
the disk free surface. The potential to isolate crack growth to one-half of the design disk 
differs significantly from standard disk design where crack growth can fail the entire disk 
load carrying capability by fracture of the disk cross-section. The fragmentation of a portion 
of a design disk half, however, can effect the integrity of the adjacent disk half by overload
ing the disk lugs common to both and tearing them off with the fractured disk'fragment. 
Possible design disk fragment patterns which can result from the LCF initiated bore crack 
and the buried matenial flaw in the disk bore are also shown-n Figure 32 

Fragment energy is defined as the total kinetic energy of a disk fragment (including the at
tached blades and side plates) upon fragmentation of the disk. The fragment energies of the 
disk fragments for the standard, the advanced standard, and the improved design disks were 
computed and are included in Figures 31 and 32. The standard disk made of Waspaloy, and 
the advanced standard disk, made of Astroloy, have the same disk geometry and disk fragment 
patterns The small difference m fragment energy between the two disks is due to the dif
ference in densities between the two disk materials. The improved design disk, made of 
Astroloy, is geometrically different from the standard and advanced standard disks. The im
proved design disk, characterized by radial bore-to-rim cooling channels machined in two disk 
halves which are transient liquid phase bonded together, was assumed to result in the confine
ment of fragmentation to one-half of the disk and thus results in smaller fragments and hence, 
lower fragment energy as compared to the standard and advanced standard disk fragments, as 
illustrated in Table VII. 
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TABLE VII
 

FRAGMENT ENERGY COMPARISON BETWEEN STANDARD,
 
ADVANCED STANDARD AND IMPROVED DESIGN DISKS
 

Fragment Available Kinetics Energy, Joules (in-lb) @ 11870 rpm 
Improved 

Advanced Design 
Pattern Type* Standard Disk Standard Disk Disk 

27 Blades and Disk Lugs; B 679,000 654,000 
Sideplates and 1200 Disk (6,010,000) (5,780,000) 
Segment 

8 Blades and Disk Lugs; E 78,000 75,000 
Sideplates and Disk Fragment (690,000) (665,000) 
Spanning 300 Circumferen
tially and above 17.8 cm (7.0 in) 
Radius 

27 Blades and Disk Lugs; B 513,000 
Sideplates and 1200 Segment (4,540,000) 
of Rear Disk Half 

8 Blades and Disk Lugs; E 72,000 
Sideplates and Segment of (633,000) 
Rear Disk Half Spanning 
300 Circumferentially and 
Avove 17.8 cm (7.0 in) Radius 

*Reference Figures 31 and 32 
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CONCLUDING REMARKS 

In the design of an increased reliability high pressure turbine disk, P&WA's study em
phasized improving reliability by increasing cycle life of the disk without increasing the 
disk weight and without loss of engine performance. The improved design disk resulting 
from this study, a bore-entry-cooled bonded disk, could potentially replace the Bill-of-
Material first-stage high pressure turbine disk in the JT8D-1 7 engine. This improved design 
disk has an LCF crack initiation life 87% and 67% greater than the standard and advanced 
standard disks, respectively Relative to the standard and advanced standard disks, the in
crease in crack propagation life for the initially flawed improved design disk is 124% and 
465%, respectively. The overspeed capability, or burst margin, of the improved design disk 
is 33%, which is 50% above the design minimum. The unproved design disk made of 
Astroloy weighs the same as the Waspaloy® standard disk. Based on the assumed disk frag
ments for the three disks (standard, advanced standard and improved design disks), the 
improved design disk has the smallest disk fragments and hence the lowest fragment energy. 
These analytical results indicate that the bore-entry-cooled turbine disk concept has the 
potential for significant improvements in turbine disk life in advanced engine designs. 
Therefore, it is recommended that unproved design disks be fabricated and evaluated in 
fatigue and overspeed tests to verify the analytical results determined in the study 

23 



ENGINE 
CENTERLINE 

TO REARIN G SUPPORT---

TANGENTIAL ON BOARD-. 
INJECTION SYSTEM 

DRILLED COOLING AIR LIMITING LCF LOCATION 
SUPPLY HOLE 

Figwn eI JT8D-1 7 High Pressure Turbine Disk C oss-Section 

A I 
A T 

DISK BORE 
RADIUS 

COOLING AIR 

ENGINE (REFERENCE) COOLING AIR
PUMPED RADIALLY 

FLOW LINESI 

UP THE DISK CENTER 
WITH ONE COOLING 

COOLING AIR AIR PASSAGE FOR 
PUMPED UP EACH TURBINE BLADE 

~RADI 
RADIAL VANES 

BOND SURFACE 

TAILORED
 
COOLING CHANNEL 

FWD DISK HALF FOR OPTIMUM DISK ' 
THERMAL GRADIENT 

I DISK LIVE 

TLP BOND RIM RADIUS 
SURFACE R 
ON RADIAL 
VANES 

DISK LUG 

SECTION A-A 

Figure2 Bonded Design Disk Cross-Section 

'EPRODUCIBLITY OF THE-

ORIGINAL PAGE IS POOR 

24 



0.8 TAKEOFF' 1 1 CRIS DESCENT 

0 

I

02 

o 
! I I I. 

E 8 

<" -" 

WoLI 

-

1600 

-1400 

< 201 
-1 

I 

600 

10 

o 
'.M 
-

i-n 

1 
I 

I 

I 

I1 I I I 

0510 is 20 

FLIGHT TIME -MIN 

25 30 35 

Figure3 JTSD-1 7 Simplified Engine Flight Cycle 

25 



84 

MEAN COEFFICIENT 
OF LINEAR EXPANSION 

14 - N -

TENSILE PROPERTIES 

2 
X 12 170 

T ENSILE STRENGTH 

300 
E~~1 

40 0 ON N0120 
6 
5 

T3.72 

X20 

32 

30 
c 

X28 

TEMPERATURE OK10 

ELASTIC MODULUS 

~300 

8L ,J 

0 

I I 

2o 

I I 

NO6ON 
OF 

60090 

TEMPERATURE OK 

. 

9o.o 

2 0 41 01 1200THERMAL0 2M0 4W 600 SOO IO 1200 

Op 

I I I 
300 600 

TEMPERATURE - OK SOON 

140 

In120 

CONDUCTIVITY 

TOO SPECIFIC HEAT 

9-

50 

06000 140 

IM 

-

4000 60 6
600 CEO 

2 
1000 

2 

40000I 

______6t___ 

I0 
0 20000 

o 6 0 

02O2 

I 
300 

I 
600 

TEMPERATURE- 0K 

900 

I I
C0OO 

TEMPERATURE - OK 

I
900 

in6, 

CRACK GROWTH RATE VS STRESS 
INTENSITY FACTOR FOR ASTROLOY 

lj-4 -LOW 
894K 
11 

F 11 

10-

CYCLE FATIGUE 
1 

TEMPERATURE CORRECTION 

9MFACTOR - KON 4 
K 098 

0
C,09 098 

0 
400 

O ON800 1000 200 

2 0 TEMPERATURE OK 

5x I×,6 < 

< 6XV 
0 E

046 
INN 

CYLE 

-0 N02 50 I -" 

Fgure 4 Design Properties for Atroloy 

26 2- RODUCiBiLiTy Op 

LOWGINAL PAGE IS Poop, 



TENSILE PROPERTIES 

MEAN COEFFICIENT 
OF LINEAR EXPANSION 

14 - 200 

Ioo 

%< " -Z2 170 TENSILESTRENGTH 

g. 
ISO30
1~ 60 

20 W4 WO0 M 0 IM 0 

TEMPERATURE,F 

12 00 

LZ10 

- Y0". IE DMENGTH 

66 
o wTE TEMPERATURE 0

K 

ELASTIC MODULUS 

0 130 

THEMALCONUCTVIT 

P.00200 4 00 00 00 
TEMPERATURE,F 

10 

o il 

~ 14040
32 

24FI0 I 1
3 SIFICHIA 
20 400 600 8) 0 C0 10 2TEMPERATURE. F 60030 


TEMPERATURE
IS1F04O *KTEMPERATURE mK 8 CSCL FATGU 

X 0 g o em 0700 00 12op20 

R GRm CRCKGRWH0ATC W HR T SS R SSTRS TEMPERATURE CRRCTOTEMPERATURETEMPERATUREEUF
CORCTO 

oT 

t 0 O LO W CY L F A T IG U EKN . 

>"10"4 OP-TEMTPMPATUURE- K 

OT 

070 
5 xS 105 5 0K 

" "= 06 

I-I
 
04
 

10 X 
0
*0 TEMPERATUR CYCLES$t0000 

z5X010-

-00 -04 -02 0 
 02=21105 

1 
50 2000 -3 -2 0 2 3 

KSI /N 5MEAN STRESS Xt10 8Nm 
2 

I I I 

STRESS INTENSITY FACTOR (MCK)2
NX 10 5Sm Im 

FigureS Design Propertiesof Waspaloy@ 

27 



I 

749 CM(295 IN) 

074 
A (029) 

BORE 

SoR 
235) BORE 

9 1CM 
(36 N) 

a B 

126R 
4951 

SECTION B B 
COOLING CHANNEL 

SHAPE AT 9 1 CM 1360 IN ) R 

" " 0519 CM 
(020402N 

I079 

~ 04 FLAT 

21 6R (0 
985) 

38 SECTION A-A 
Ba51 

A 

Fgure 6 Schematic of Bonded Diskc With Radial Cooling Air Flow Passages 



- ENGINE Q _ 

BORE 
57R 

6 3CM (225) 
(249 IN) 

126 R

(4.95) 

21 6 R
 
C8.5)
 

LIVE RIM 

•"---
-38
 
(15) 

Figure 7 Schematic of Standardand Advanced StandardDisk 

29 



U
2 

z 
z co 

Z
3 

cc 

O
 

U
 

REPRO
DUCEBILITY O

F TH
E
 

O
R

IG
IN

A
L

 PA
G

E
 IS PO

O
R


 



TAKEOFF-R- i- CLIMB .- CRUISE-..L DESCENT--,,II
 
750 9 STANDARD DISK TEMPERATURE PROFILES I
 

00 RM 

700I I
 
ILI 600 1BORE
 

o
= 0 oo BORE 
KS DIAU".I

PEDSTANDARDD,,,,,,,SANT 
I I '
 

750AD

300 I-1
 

200
 

350
 
I-I900ADVANCED DISKI
750 STANDARD 

TEMPERATURE PROFILES 

700
 

0 I BORE 

wos~ BOR
 

400
 

300
 
I-,
 

3503
U 750 00 BONDED DISK TEMPERATURE PROFILES 

700
 

350 0 2 1111122222333
 

~600 

400
 

300
 

350 - 02 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
 

TIME - MINUTES
 

Figure9 Disk Rim and Bore Averaged Surface Temperatures vs Flight Time 

31 



AT 70.0 SECS 
(END OF TAKE OFF) 

AXIAL DISTRIBUTION 

RADIALDISTRIBUTION 

/ 

/ 

-7 00 

F R 

AXIAL 

LENGTH 

FO RWAR 

H 

RE 
/-
AR 

'00 FC7 W 

00 

. , AXIAL 

(F) (Rl)4 o 
/-o IAXIAL 

F R LENGTH 

- .- - . . . ..- - - - - - -

-- ------ -

50 O 

-

0 00010 -

7[ 

4000 
L I 80I 

Ix 

F 

/ 

1 
R 

AXIAL 

AXIAL 
LENGTH 

E0 6(X) 700 EGG 90 VX-

500 I00 700 8FT 
AVE TEMPERATURE I- K 

00 AXIAL 

b. AT 790 SECS 
(END OF CLIMB) 

AXIAL DISTRIBUTION 

7O 0 

RADIAL DISTRIBUTION 

S- F R LENGTH 

__ SIX I- AXIAL70 

FORWARD REAR 
 HF a 

(F) 	 i 

AXIAL 

LENGTH 

-- - - - - - - - - - -	 AXIAL:[LF 
A0 LENGTH
F0 


I I II 

SIX MRP7 1I O F R LENGTH 
OF 

50 6(X) 700 MC 
AVE TEMPERATURE I " 

K
 

Figui e 10 	 Radial and Axial Temperature Distribution in Standaid and Advanced Standard 
Disks at Pertinent Points in the Flight Cycle 

REPRODUCIBILITY OP TIM 
ORIGINAL PAGE IS POOR 

32 



-- 

C. 	 AT 1390 SECS 
(END OF CRUISE) 

RADIAL DISTRIBUTION 

AXIAL DISTRIBUTION 

- - - AXIAL 
F R LNZ 

FORWARD REAR 	 -to6 I I AXAL 

(F) (RF ...	 LENGTH 

-AaI 

. . . .	 AXIALSOO - -	 X PO oo0 _______ 
-


-


------------------------------	 ------- LE-------

SOO 	 IAXIALM[I 
ERF 	 R LENGTHF R 

~ ~ 	o~L IAXIAL 
500 M0 	 70 M0 90 00 P N GT 

p I I I 
500 00 700 00 

TEMPERATURE  oK
 

d. 	 AT 1990 SECS 
(LANDING) 

RADIAL DISTRIBUTION 
AXIAL DISTRIBUTION 

400 

350 	 400I R R 

------	 I I AXIALIF- -(FR)_ - -- - - -	 _ _.350 L LENGTH 
FoW 	 AXIAL 

S 400 
AXIALFOR 	 ARD RE0AR 

10 03(RI 3350 	 R LENGTH 

-- -- - - - - 450[- - - - J 3 40 F R LENGTH 

AXIAL 

II	 I I.400 

~350[F~-> IAXIAL 
100 J.. 5W, 50R 	 LENGTH 

OF 

AVE TEMPERATURE - OK 

Figure10 	 RadialandAxial TemperatureDistributionin Standardand Advanced Standard 
Disks atPertinentPointsin the Flight Cycle (Cont) 

33 



a. AT 70 SECS 

(END OF TAKEOFF) 

RADIAL DISTRIBUTION AXIAL DISTRIBUTION 

9X)AXCIAL. 

7MM LENGTH 

FORWARD REAR 
(F) (I) 

F R 

= ;' 700 800 
7W M 

F 

7OW 

SIX 700 M FR 

I L 
oF 

500 600 O00 
AVG TEMPERATURE OK 

b. AT790SECS 
(END OF CLIMB) 

RADIAL DISTRIBUTION AXIAL DISTRIBUTION 

-------------------------------- [! 700[ 

i 

AXIAL 

LENGTH 

P R 
..0 70 

FORWARD REAR 2 0 0 F R 
(F) (RI 

-JF 

650 700 
F R 

. . . I 550 

F FR

11[71)(700 I 

064Y7000 F R 
F FO 

I I I 
650 600 700 

AVE TEMPERATURE - OK 

Figure11 RadialandAxial TemperatureDistributionin the Design Disk at PertinentPoints 
in the Flight Cycle 

34 



--------------------------

c AT 1390SECS 

(END OF CRUISE) 

RADIAL DISTRIBUTION AXIAL DISTRIBUTON 

750 S00 

I jIAXIALI 
050[ 7o LENGTH 
700F R 

\A- Ioo 700i 
FO)AR REAR z8000 

/1 '700 800 

700 

700 S00 

700 
600[ 

0 FF 

L. I I 
500600700No000

500 600 700 50 

AVE TEMPERATURE oK
 

d. AT 1990 SECS
(LANDING) 

RADIAL DISTRIBUTION 

AXIAL DISTRIBUTION 

400 
-- 300 AXIAL 

N N.--3 200 LENGTHL 
F 

400 
450[ o I ,
 

0 R
 

FORWARD HEAR <

(F) (R)0 

,200	 \\ =I I 
0 

40)
 

I3I150[ 	 200 F R 

200 34 400 500 

OF
 

'1,0 ,O~O 
0

AVE TEMPERATURE -k 

Figure 11 	 Radialand Axial TemperatureDistributionin the Design Disk at PertinentPoints 
in the Flight Cycle (Cant) 

35 



TAKE OFF CLIMB I DESCENT 

7 cn o STANDARID DISKI 

RIM TANGENTIAL 
3 

4 

w 20 

'A 
1 

RIM RADIAL 

,a "-ADVANCEDSTANDARD DISK 
S80 -E 

2 0 

oDESIGN DI____S__K
 

N -o ORETANGENTAL 
- 60 1 RIM TANGENTIAL 

Z 4
 

2 
1 RIM RADIAL 

o L I01 I I I 
20 40 60 80 100 120 140 160 3 7 11 15 19 2 27 31:4 

TIME - SECONDS .1 TIME MINUTES 

Figure 12 Nominal Disk Rim andBoie Stresses at Various Flight Conditions 

fIPODU 1BILTY OF THE 
36 
 W161NAL PAGE IS POOR 



80 DISK LUGS 

4 41441 4 14IF 

uF S 

f 
DENOTES PLANE STRESS ELEMENTS 

DENOTES BODY OF REVOLUTION ELEMENTS 

FB = CENTRIFUGAL BLADE PULL LOAD 

FS = CENTRIFUGAL SIDE PLATE LOAD 

ENGINE CL (REF) 

Fgure13 FiniteElement Model of Design Disk 

37 



40 

03 

00 2 

20 

0 0 - -

-20 

C? 

-2 X 

-40 

-60 

I-8 

AXIAL STRESS AT 56 SECONDS INTO FLIGHT CYCLE 

-100 
30 40 50 60 70 80 90 100 

I ~INCHES I I 

10 15 20 25 

RADIUS - CM 

Figure14 Design Disk Axial Stress vs Radius Along Bond Surface 



VIEW A 

4IS ..A L.V V.E 

2I ADU 

+- RA+A 

4 HOOP 

einDs rahSo7zue1 mt lmn oelo 

3 till POUCBLT 

O4GIA pAEiP0
 

3 



0r 

SECTION A-A
 

Fgure 16 Finite Element Model of Design Disk Cooling Air Channel 



BLADE ROOT CONNECTIONS 

TOOTH NO . 

TOOTH NO 2 

,,TOOTH NO. 4 

BROACH SLOT
BROACH SLOT 


STRESS CALCULATED AT MAXIMUM ENGINE SPEED (11870 RPM) 

TOOTH SHEAR TOOTH BEARING 

TOOTH OF THE DISK LUG STRESS STRESS STRESS 

2 8 2 8 N/m 2 

TENSILE STRESS IN NECKS TOOTH BEND 

NO 108 N/m 2 KSI 108 N/m KSI 10 N/m KSI 10 KSI 

1 201 291 1.84 26.7 1 52 220 433 62.8 

2 255 370 157 227 150 21.7 415 602 

3 279 404 156 226 150 217 415 602 

4 294 42.6 268 389 1 34 194 447 64.8 

Fzgu e 17 CentrifugalStresses at the Disk/Blade-Root Connection 



O'o 

TIME(ONE FLIGHT CYCLE) 

U3 

47MEAN 
MINOR 

AgMAJORw O'MEAN 
MINORMAJORCo 

aO.AEMAJOR 

STRAIN 

StressHistory atEach Stress ConcentrationLocation 
Figure18 

pwRD~lC]B~yOF TE 
6BIGIAL ISPOOR 

42 



99.9 

990 
S 

90.0 1 

632 

PERCENT 500 

CRACKED I 

0.079 CM 20I 

(1/32 IN.) I 

50 

I I I I 1 11 1 

., .5 10 5.0 10.0 50 100 

ACTUAL CYCLES TO 0.079 CM (1/32 IN.) CRACK 
PREDICTED CYCYCLES TO 0.079 CM (1/32 IN.) CRACK 

Figure19 P&WA Engine Low Cycle Fatigue- Experience Vs. Prediction 

43 



STANDARD DISK ADVANCED STANDARD DISK DESIGN DISK 

- ENGINE Q - -ENGINEQ - -... ENGINE Q__ 

>10 5 CYCLES > 10 5 CYCLES >10 5 CYCLES"
S23,000 CYCLES 

I -

,000 18,000 30,600 23,000 

CCL ECYC-LES CYCLES 

MARTL WASPALOY ASTROLOY ASTROLOY
BURST MARGIN 35.6% 35.9% 28.5% 
%WEIGHT 100% 96% 96% 

*DESIGN MINIMUM 22% 

Figure20 LCFCrackInitiationLife Summary of the Standard,Advanced Standardand Design Disks 



LIVE-RIMI 
LIVERI 

LIVE-RIMLV 

/ 	 1/

01 LIE RIMRELIEBRRM 

2 

BOREBORE 	 BORE 

STANDARD DISK (WASPALOY) ADVANCED STANDARD DISK (ASTROLOY) 	 DESIGN DISK (ASTROLOY) 

FLAW
FLAW
FLAW 

LOCATION LOCATION LOCATION 

CRITICAL LOW CYCLE FATIGUECRITICAL LOW CYCLE FATIGUE 	 CRITICAL LOW CYCLE FATIGUEO 
INITIATED FLAW SITE AT INITIATED FLAW SITE AT COOL- 'Y 	 INITIATED FLAWSITE AT 

COOLING AIR CHANNEL ENTRANCECOOLING AIR HOLE EXIT 	 ING AIR HOLE EXIT 

E 	 CRITICAL MANUFACTURINGCRITICAL MANUFACTURING 	 CRITICAL MANUFACTURING FLAW AT DISK BOREFLAW AT DISK BORE0 FLAW AT DISK BORE 

CRITIC MANUFACTURING FLAW 

FLAW AT DISK WEB MAXIMUM kJ 	 FLAW AT DISK WEB MAXIMUM AT TLP (B) BOND LINE IN RADIAL VANE' 
RADIAL STRESS LOCATION 

Q CRITICAL MANUFACTURING 	 CRITICAL MANUFACTURING 

RADIAL STRESS LOCATION 

A Figure21 CriticalFlaw-Sitesfor the Standard,Advanced Standardand Improve Design Disks 



STANDARDDDISK (WAEPALOYN 

ADVANCED STANDARD DISK (ASTROLOY),.-a 

a/R' = 40 

"THERAT10 OF a/c WAS ANALYTICALLY 
DETERMINED BASED ON THE LOCAL 

STRESS PROFILES 

{~( /322IN) 

./' = 4 

STRODUESSIT PROFILE 

BORE 

LIV RM AR HANELERANCELCAEON POR 
ANCED SONA DISK (ASTROLOY) P 



A 

7 49 12 95 

,'74 

) 

29) 

9CMR 

(235 IN) BORE 

1268 
(495) 

F .9CM 
90 0791NI 
(NOM) 

1278R 
iS O? 

RADIAL VANEBULUNO)(20 

S 13 MISALIGNMENT 
TOLERANCE
DUE TO (0 )0 74 

POINT OF MAXIMUM
" 

AXIAL TENSILE STRESS 

RADIAL COOLING(TPCL 
AIR PASSAGE 

003 
010 

21 6 R 

(85) 

LIVE RIM= 

- -SECTION B B 

CALCULATED INITIAL CRACK 
LENGTH AT WHICH THE INFLU-
ENCE OF THE SHARP CORNER 

BECOMES NEGLIGIBLE 

(150) SECTION A-A 

Figure23 Schematic of Design Disk Showing TLP®Bond Misalignment 



DIAMETER FROM COOLING CHANNEL - CM 

10 05 0 
I INCHES I 

040 035 030 025 020 015 010 005 0 

w I I1 0 0 
1150 

CYCLES FROM 0 079 CM(1/32 INCHI-
CRACK (ADVANCED STANDARD 
DISK) 

* 1050 10
1000 

900 005 

800 

(700 
0000 

010 
S 

If 
/4000 
f0 

25 600 
Z 

1700 
CYLE RO 001C 35 0 

1950 020 05 

2250< 

CYCLES FROM 0 079 CM 02 
(1/32 INCH) CRACK 260002 
(STANDARD DISK) 140 I-4 340 -- 0 

290 03 z 
30 

-035 

0 
-040 10~ 

CRITICAL CRACK SIZE 

488
 

Figure 24 Crack Profilesfor Standardand Advanced Standard Disk Cooling-Air Channel 
Exit Cracks 

48 



ENTIRE BORE REGION OF DISK HALF 

020-

07 
204900 CYCLES FROM 
- 06 0079 CM CRACK 

(1132) 
LU 470005 

0 

0 04 4300 

at 03 CRITICAL CRACK SIZE 
3600 

02 3300 

CO-2500 
01 

0 

0 01 02 03 04 05 06 07 08 09 10 11 12 13 

I- INCHES II
I 

0 10 20 30 

DISTANCE FROM COOLING CHANNEL - CM 

0250 DETAILS OF FILLET REGION
 

0 225
 

3300 
05 U 0200 3200 CYCLES FROM
 

00
 0079 CRACK
 

0175 2500 (1/32')
 
3000 

015O 

0125 
03 

Ca'i 0100 

0 


I )
02 0076 

o050a 

01[ 01 02 alc=44 
0025 

I0 I 
0 0025 0050 0075 0100 0125 0150 0176 0200
 

INCHES 
I I I I I I 
0 01 02 03 04 05 

DISTANCE FROM COOLING CHANNEL CM-

Fgure25 CrackProfilesforDesign Disk Coohng-Air ChannelEntrance Crack 

49 



10 

10 

9 

AK THRESHOLD 

8 

7 

6 

50
 

0 46CM 

I-us (180 IN) T 
4 (0 170IN) 074 CM 

Nal (0 290 IN) 

12 KS I 

2 

[ 1 
I 

I I I I 
1 0 0002 0004 0006 0008 0010 0012 0014 0016 0018 0020 0022 0024 

-a IN 

0 1 2 3 4 5 6 
CRACK LENGTH -MIA1 

Figure 26 Stress Intensity (AJ) Values for Bond Misalignment In Web of Design Disk 

so 



OPXG~bAL PAGE is PO 

A 

//~ 

vIOw) CR~ 

27 TD- 7 F ir,-Stage H gh P~resuseTurbie Bore-Entry-Cooed mp o ed Deign
F qxure 

Disk 



STANDARD DISK 

- - ENGINE I_ - -

>105 CYCLES 

ADVANCED STANDARD DISK 

- - ENGINE 

>10' CYCLES 

IMPROVED 
DESIGN DISK 

--- E..NGINEI

>10' CYCLES> 

30,000 CYCLES 

I\ 

16,000 	 18,000 35,000 
CYCLES CYCLES YCLES CYCLES 

MAT'L WASPALOY® ASTROLOY ASTROLOY 
BURST MARGIN' 250% 359% 	 33%

%WEIGHT 100% 96% I00% 

*DESIGN MINIMUM 22% 

Fgue28 	 LCF aeekInittatzn Life Summay of the Standard,Advanced Standardand Improved Desgn 
Dt 

0 



30 
ENTIRE BORE REGION 

0 

20 

.20 

0 

081 

0 7 -

6500 Z--N. O CCESFO 

CLES F0 7 9 CM CRA CK ( 1132 '1 

-RAC 

a 00 

030 

10 04 
O 

0
5300 

CRITICAL CRACK SIZE 

0 01 

0f 
L 

02 03 04 05 06 07 08 09 10 

I I 
0 20 

DISTANCE FROM COOLING CHANNEL 

11 12 

- INCHES 

I 
30 

- CM 

13 14 is 

06 

05 

-

0250 

0225 

0200 

-

DETAILS OF FILLET REGIONJ 

OOF CYCLES 
4100 FROM 0079 CM CRACK 

( 1/32"1 

w 0175 

O 0 0 
0150 

2200 
a 3700 

O 
03 

z 
07 

0125 

0100 

C 

1CH 

3200 

70 

02 - 400 3 

0075 IIN 

01-
0050 

05025 

a=0 4 

00 0025 0 050 0075 0100 0125 0 160 0 175 0200 

-I NCHES 

0 01 

DISTANCE 

02 0a 04 

FROM COOLING CHANNEL 

05 

-CM 

Fgure29 CrackProfilesfor thJImproved Design Disk Cooling-Air Channel Entrance Crack 

53 



STANDARD DISK ADVANCED STANDARD DISK IMPROVED 

DESIGN DISK 

- -ENGINE q - - ENGINE --- ENENGINE q- -

65,000 37,000 

CYCLES 39,000 6,500 CYCLES 
CYCLES CYCLES 

05CYCLESCYCLES>1
5 	 CYCLES 

I2900 10 
CC
 

MAT'L WASPA LOY 	 ASTROLOY ASTROLOY 

BURST MARGIN' 356% 	 359% 33% 

%WEIGHT 100% 	 96% 100% 

*DESIGN MINIMUM 22% 

Fsgure 30 	 Crack PropagationLife Summary of the Standard,Advanced Standardand 
Improved Design 



FRAGMENT PArERNS FROM A FLAW BURIED 

FRAGMENT PATTERNS FROM A SURF,ACE RIM FLAW 
IN THE DISK BORE 

LA STANDARD DISK ADVANCED STANDARD DISK STANDARD DISK ADVANCED STANDARD DISK 

FRAGMENTI
 
TYPE
 

A 	 A 

2 FRAGMENTS 2FRAGMENT3 	 FRAGMENTS 3FRAGMEITS 

INITIAL FLAW 

INITIAL FLAW 

B 	 B 

1200 
 12 	
200 1200AA 

+ 

SNT FRAGMENTS FRAGMENTS
 

300 300
 

DD INITNITIA 

Ra B 	 1 B 
1200 20 1200 +0200 

1200 1200 

A * 190C17125) 
FLAW 

1FRAGM ENT 	 1FRAGM ENT 3FAMNS3RGET
 

Figure 31 Assumed FragmentPatteinsfor the Standaidand Advanced StandardDisks 



FRAGMENT PATTERNS FROM A FLAW BURIED IN THE DISK WEB 

STANDARD DISK ADVANCED STANDARD DISK 

INITIAL FLAW 

DISK<RIM 

(D ~DISKBORE 0 

2 FRAGMENTS 2FRAGMENTS TOTAL FRAGMENT ENERGY@ 11870 RPM 

STANDARD DISK ADVANCED STANDARD DISK 
30 30 FRAGMENT JOULES IN-LB JOULES IN-LB 

E TYPE o6 6 06 106 
INITIAL FLAW E__________________ 

A 1 02 901 980 868 
B .679 6.01 654 5 78 

A A C 339 3.0 327 289 
D 133 117 .128 113
 

E .078 690 075 665
 

F 105 934 .102 900

R *I7SCM(70 

G 940 832 .905 801
 

H 573 507 552 488
 
3 FRAGMENTS 3 FRAGMENTS 

INITIAL FLAW 

4 
 FRAGMENTS
 

Fguie 31 Assumed FragmentPatternsfor the Standardand Advanced StandardDisks (Cont'd) 



FRAGP 

LA 

FRAGMENT PATTERNSFROMA SURFACEFLAWAT THE COOLING AIR CHANNEL ENTRANCE 
FRONTHALF 

REARHALF 

FPPNO 

goGMN pATE FRGMEN A URACFA 
F/P.FRAGMENTPATTERN 

FRAGMENT PATTERNS FROM A SUBSURFACEFLAW 
BURIEDIN THEDISK BOREFRONTHALF REARHALF 

3. 

i
IENT 

,F/.FRAGMENTPATTERN 

INITIALrLA 

EN0INE IREI 

E 1NGIN . ' EFI 

'GoF 810 2NI 

FRAGENT [FLAWAT 

INITIAFLAW 0SITE 

LCPFINITIATION 60" 

g 

F 
4RGET 

2 RABMEO 

o o 

H0GE SUBSURFACE 
FLAW 

'P reNO 

FRAGMENT 

S I20COTOENR 

I1117A 

48013 

FRONT18PI 
TEAR 

5 2goo 

F/"P 

1HALF 

3 

FIG 

I-GR 

AL2 

FT20021, 

Figure32 Assumed FragmentPatternsfor the Improved Design Disk 



____________ 

FRAGMENT PATTERNSFROMTHEIN FLUENCE OFA
 
MANUFACTURING FLAWAT THE BONDLINE
 

REARHALF 
 *F/M* FRAGMENT PATTERN 
FRONT HALF 

1FRAGMENT
 

ENGINEC._IREFII 	 R 

TOTAL FRAGMENT ENERGY @11870 RPM 
MANUFACTURING 

FLAWAT 	 DESIGN DISK 
FFFNO2 	 BONDLINE FRAGMENT 

No o 	 JOULES IN-LB 
TYPE 106 106 

C A 385 3A0 
454FRONT- t-REAR 	 B .513 

HALF A_HALF 	 C 256 2 27 
D 171 1 51 
E .072 633 

F 097 855 
G 064 .570 
H 441 3.91 

LIVE RIM 

30~ F/P NO 3 

121 816. 	 A 17 8) 70 

Figure32 Assumed FragmentPatternsfor the Improved Design Disk (Cont'd) 

I 



LIST OF SYMBOLS 

a/c crack depth to crack length (surface crack) 

BIM Bill-of-Material 

BTU British Thermal Umts 

cm centimeters 

OF degrees Fahrenheit 

ID inner diameter 

in inches 

J Joules 

OK degrees Kelvin 

Kg kilograms 

ksi 1000 pounds per square inch 

LCF low cycle fatigue 

m meters 

mm mllimeters 

N Newtons 

psi pounds per square inch 

RPM revolutions per minute 

SCF stress concentration factor 

TLP® Transient Liquid Phase bonding process 

AK stress intensity factor 

e strain 
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