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Ultra-relativistic nuclear collisions: Event shape engineering
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The evolution of the system created in a high energy nuclear collision is very sensitive to the fluctuations
in the initial geometry of the system. In this Letter we show how one can utilize these large fluctuations
to select events corresponding to a specific initial shape. Such an “event shape engineering” opens many
new possibilities in quantitative test of the theory of high energy nuclear collisions and understanding
the properties of high density hot QCD matter.

© 2013 Elsevier B.V. Open access under CC BY license.
Many features of multiparticle production in ultra-relativistic
nuclear collisions reflect the initial collision geometry of the sys-
tem. These initial conditions affect to a different degree all the
particles and therefore lead to truly multiparticle effects usually
referred to as anisotropic collective flow. Studying anisotropic flow
in nuclear collisions provides unique and invaluable information
about the evolution of the system created in a collision, properties
of high density hot QCD matter, and the physics of multiparti-
cle production in general [1,2]. Even at fixed impact parameter,
i.e. for fixed average collision geometry, the position of the indi-
vidual interacting nucleons fluctuates event by event, which leads
to fluctuations in the initial shape of the nuclear overlap region
[3,4]. Recently, significant progress has been made in understand-
ing the role of the fluctuations in the initial density distribution
[5–9]. In particular it was realized that such fluctuations lead to
odd harmonic anisotropic flow, which enable new insights into the
dynamics of the system evolution. The experimental measurements
[10,11] confirm the existence of collective flow up to at least sixth
harmonic, thus lending strong support to the picture.

At present, the effect of the initial geometry on final state ob-
servables can be studied only by varying the collision centrality,
or colliding nuclei of different size and shape. It has been always
tempting to study anisotropic flow at maximum particle density
that is reached in very central collisions. However the average
anisotropies in central collisions are small. Collisions of very non-
spherical nuclei, such as uranium, should be able to provide events
with large initial anisotropy and high particle density (in the so-
called body–body collisions), however the analysis might be very
complicated due to a large variety of possible overlap geometries
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that have to be experimentally disentangled. In this Letter we dis-
cuss how one can utilize the strong event-by-event fluctuations in
the initial geometry to select events with different initial system
shapes even at fixed impact parameter, e.g. central Au + Au colli-
sions with either large or small initial anisotropy, and in this way
study the system evolution under conditions not possible before.

The study of particle production in events corresponding to
a specific geometry opens a number of very attractive possibili-
ties. One of those, mentioned above, is the study of the system
evolution in a high density regime (central collisions) and con-
currently strongly anisotropic initial conditions. This would add
new constraints to questions such as how close the system is to
the so-called “hydrodynamic limit” and the development of the
anisotropic flow velocities fields. Analysis of transverse momentum
spectra in events with fixed particle density but varying geomet-
rical deformation can shed light on the correlation between radial
and anisotropic flow. Another example would be understanding the
“away-side” double bump structure in two-particle azimuthal cor-
relations [12,13]. Several years ago, this attracted a considerable
attention as a possible indication of the Mach cone due to propa-
gation of a very energetic parton through the dense medium. More
recently it was found that this structure is likely due to triangu-
lar (third harmonic) flow. Additional proof for this interpretation
might come from studying such correlations in events with very
small triangularity. Several other examples, including azimuthally
sensitive femtoscopy and an estimate of the background effects in
chiral magnetic effect studies will be discussed later in the Letter.

There might be different approaches to s classify individual
events according to their geometrical deformation, i.e. to perform
an event shape engineering (ESE). The one adopted in this Letter
is an extension of the technique proposed in [14] that is based
on the event selection according to the magnitude of the so-called
reduced flow vector qn (the subscript n is the harmonic number,
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for the exact definitions see below). We always perform ESE us-
ing two subevents. We use here a common terminology in flow
analyses, where a subevent refers to a distinct subset of all mea-
sured particles selected either at random or in a given rapidity
and/or transverse momentum region. One of the subevents is used
to select events according to their shape (we will always call it
subevent “a” below) whereas the physical analysis of any event
properties is performed on the second subevent (subevent “b”).
Using two subevents helps to avoid nonphysical biases due to non-
flow effects as discussed below. The second subevent (subevent
“b”) is also used to extract the average flow value and its fluc-
tuations in the selected event sample, as the unknown nonflow
contribution to the qn-distribution used for the event selection
prohibits such an evaluation based solely on subevent “a”. We use
the Monte Carlo Glauber model to illustrate how the event selec-
tion based on flow vectors works and outline the general scheme
for the corresponding experimental analysis.

To quantify the anisotropic flow we use a standard Fourier de-
composition of the azimuthal particle distribution with respect to
the n-th harmonic symmetry planes [15,16]:

E
d3N

d3 p
= 1

2π

d2N

pT dpT dy

(
1 +

∞∑
n=1

2vn cos
[
n(φ − Ψn)

])
, (1)

where vn is the n-th harmonic flow coefficient and Ψn is the n-th
harmonic symmetry plane determined by the initial geometry of
the system (as given by the participant nucleon distribution, see
below). The event-by-event fluctuations in anisotropic flow are be-
lieved to follow the fluctuations in the corresponding eccentricities
of the initial density distribution. Following [9], for the latter we
use the definition

εn,x = 〈
rn cos(nφ)

〉
, εn,y = 〈

rn sin(nφ)
〉
, (2)

εn,p =
√

ε2
n,x + ε2

n,y, tan(nΨn) = εn,y/εn,x, (3)

where εn,p is the so-called participant eccentricity [4]. The aver-
age can be taken with energy or entropy density as a weight.
In our Monte Carlo model we weight with the number of par-
ticipating nucleons (those undergoing inelastic collision). For the
nucleon distribution in the nuclei we use the Woods–Saxon den-
sity distribution with standard parameters (for the exact values see
[14]); the inelastic nucleon–nucleon cross section is taken to be
64 mb. We assume that the flow values are proportional to the
corresponding eccentricities with the ratio fixed to approximately
reproduce measured vn values [11]. As it is shown in [17], in this
case the distribution in vn is very well described by the so-called
Bessel–Gaussian (BG) distribution

p(v) = BG(v; v0,σvx), (4)

where

BG(x; x0,σ ) ≡ x

σ
I0

(
x0x

σ 2

)
exp

(
− x2

0 + x2

2σ 2

)
, (5)

which is the radial projection of a 2-dimensional Gaussian distri-
bution with width σ in each dimension and shifted off the origin
by a distance x0.

The flow vectors are calculated in two subevents [1,16] with
multiplicities in each subevent approximately corresponding to
�η = 0.8 in Pb + Pb collisions at LHC energies [18] (approxi-
mately 1200 charged particles per subevent for 0–5% centrality).
The multiplicities are generated with a negative binomial distri-
bution based on the number of participants and the number of
binary collision as in [14], using about 1.2 M simulated events for
each 5% bin in centrality.

The flow vectors are defined as
Fig. 1. (Color online.) Mean elliptic and triangular flow values in a-subevent as func-
tion of the corresponding qn magnitude in b-subevent for two different centrality
selections.

Q n,x =
M∑
i

cos(nφi), Q n,y =
M∑
i

sin(nφi), (6)
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√

M, (7)

q2
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where M is the particle multiplicity and φi are the azimuthal an-
gles of particles in a given subevent. Eq. (8) presents the relation
between the length of the qn vector and the average correlation
between all pairs of particles in a given event. The distribution
in the magnitude of flow vectors qn , which are measured event
by event, has been proposed [15] and often used to measure the
average flow [1,19]. The distribution in qn is determined by the
vn distribution convoluted with statistical fluctuations due to the
finite particle multiplicity (plus any detector resolution effects, if
relevant). For relatively high multiplicities (M � 300) it is also very
well described by a BG distribution

p(q) = BG(q;q0,σqv) (9)

with parameters directly related to those of the underlying vn dis-
tribution:

q0 = √
M v0, σ 2

qv = σ 2
qx + Mσ 2

vx, (10)

σ 2
qx = 1

2
[1 + Mδ], (11)

where M is the multiplicity used to build the flow vector, and the
nonflow parameter δ accounts for possible correlations not related
to the initial geometry of the system. (For a more detailed discus-
sion of the functional form of qn distributions see [20].) Thus, the
fit to the qn-distribution provides information to both the average
flow value as well as flow fluctuations, if the nonflow contribution
can be neglected or estimated from other measurements. On aver-
age, q values are larger in events with larger flow, which allows to
use q-distributions for selection of the events with large or small
flow.

1. Zero nonflow

We start the discussion of the ESE with the simplest case
when all the correlations in the system are determined only by



396 J. Schukraft et al. / Physics Letters B 719 (2013) 394–398
anisotropic flow. Fig. 1 shows the average values of v2
n (n = 2,3)

calculated via the 2-particle correlation method in one of the
subevents (“b”) as function of the flow vector magnitude in the
second subevent (“a”). In the simulations the two subevents are
statistically independent and are correlated only via the common
participant plane and flow values. Therefore the results v2

n,b{2} ex-
tracted for subevent “b” correspond on average to the “true” values
of 〈v2

n〉 for the given event sample. The results in Fig. 1 demon-
strate that within a narrow centrality bin one can select event
classes with average flow values varying by more than a factor of
two, based on the magnitude of the reduced flow vector.

When separating events according to their flow values, not only
the mean flow values in each event class are relevant but also
the width of the flow distribution in each class (and therefore the
overlap between classes). The latter depends on the “experimen-
tal resolution” of the event-by-event flow, which increases with
the number of particles used to calculate the flow vector, as well
as depends, more weakly, on the flow magnitude itself. We find
that for a multiplicity corresponding in our example to centrality
20–25%, the width of the v2 distribution for a fixed q2,a value is
about factor of 1.5 smaller than that for the unbiased event sample
(changing from 0.031 to 0.022); the width decreases by about 20%
if one doubles the size of the subevent (double the multiplicity)
used for the q2 determination.

In practice one can obtain information about the vn distri-
butions in any given event class, corresponding to different cuts
on the qn,a values, from the fits to the qn,b-distributions. Fig. 2
shows distribution in qn,b (subevent-b) for three different selec-
tions on qn,a , separately for the second and third harmonic flow
components. The selections correspond to the full unbiased dis-
tribution (no cuts) and the 5% lowest and 5% highest qn,a values,
respectively. All qn,b distributions in Fig. 2 are fit to the BG func-
tional form to extract the corresponding mean flow values and the
corresponding width (see, e.g. [1]). It is remarkable that the fits
are very good not only for the unbiased q-distributions but also
for the ones corresponding to the low flow and high flow “en-
gineered events”. Using the extracted fit parameters we plot the
corresponding vn distributions in Fig. 3 (shown by dashed lines)
and compare them to the actual (“true”) vn distributions (shown as
a histogram), which are known in the Monte Carlo simulation. One
finds an excellent agreement between the two indicating both that
the vn distributions in the “shape engineered” events are also very
close to a BG form and that the full distribution of flow values in
each selected event class can be very well approximated from fits
to the corresponding q-distribution. Indeed, we have found that in
the Gaussian approximation [17], the conditional probability den-
sity p(vn|qn) (vn probability density in events with given qn) is
given by following equation:

p(v|q) = p(v)p(q|v)

p(q)
(12)

= BG(v; v0,σvx)BG(q;√M v,σqx)

BG(q;√M v0;σqv)
, (13)

where the subscript n is omitted for clarity. It appears that for
realistic values of the parameters this equation is very well ap-
proximated by a single BG function, which explains the possibility
to fit the distributions shown in Fig. 2 to the BG form.

2. Nonflow effects

The ESE approach described above is based on using two
subevents. In this case possible nonflow effects can be separated in
two major categories (a) when nonflow effects are present within
each of the subevents, but there is no nonflow correlations be-
Fig. 2. (Color online.) q2,b and q3,b distributions in the event samples selected by
different cuts on the corresponding qn,a-vector magnitude indicated in the plot. The
lines show the BG fit to the distribution.

tween subevents “a” and “b”, and (b) when nonflow correlations
are present between, as well as within, subevents. We do not know
a good solution to the case (b) and below we only discuss possi-
ble biases in the event selection one might expect in this case.
In a real analysis one should try to minimize the nonflow corre-
lations between the two subevents which are used for ESE selec-
tion and physical analysis, respectively. A practical solution to that
might be to use subevents which are separated by a significant
(pseudo)rapidity gap.

The case (a) can be addressed by the conventional flow analy-
sis. After the event selection is done with qn,a cuts, and the flow
in the selected events can be estimated using particles in subevent
“b” with standard methods, including e.g. many-particle cumulant
analysis [21–23]. Note that in case (a) the two subevents are cor-
related only via the strength of flow (i.e. the value of the initial
eccentricity), and therefore any potential effect introduced by non-
flow into the event selection made with qn,a will not bias the flow
measurement in subevent “b”.

To demonstrate possible biases to the analysis in case (b), we
introduce nonflow into our Monte Carlo Glauber model. Nonflow
effects are simulated by assuming that a fraction (in this simu-
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Fig. 3. (Color online.) Actual (true) v2 and v3 distributions in the event samples
selected by different cuts on the corresponding qn-vector magnitude indicated in
the plot, compared to that extracted from the BG fits to qn,b distribution shown in
Fig. 2 (dashed lines). Note that the lines are not fits to the histograms!

lation half) of all particles in the entire event are produced in
pairs with both particles in a pair emitted with the same az-
imuthal angle [22]. Each particle is assigned randomly to one of
the two subevents. In this case the nonflow parameter δ is of size
δ = 1/(2M), where M is the (full) event multiplicity, which roughly
corresponds to the nonflow estimates at the LHC energies. Fig. 4
presents the results for the flow calculation in subevent “a” using
2- and 4-particle cumulant methods as function of q2,b . The ex-
pectations based on simulated flow are also shown. One observes
a significant bias due to nonflow, leading to an overestimate of the
flow values in high flow selected events and an underestimate in
the low flow selected events. This trend is due to positive sign of
the nonflow correlations. The bias in the corresponding v distri-
butions is shown in Fig. 5. Note that even though the bias of the
mean values of flow is modest, at large values of vn the actual
distribution differs by orders of magnitude from the one deduced
from the q-distribution fits.

Below we discuss briefly several analyses which can profit from
event shape engineering.
Fig. 4. (Color online.) Elliptic flow measured with 2- (red points) and 4-particle
(blue) cumulant method in subevent “b” as a function of the corresponding q2,a

magnitude. Solid symbols correspond to centrality 20–25%, and open symbols to
0–5% centrality. The true (simulated) values are shown by green markers, as ex-
pected for 2-particle cumulant results and by magenta for 4-particle cumulant re-
sults.

3. The chiral magnetic effect

The chiral magnetic effect proposed in [24–26] is a charge sepa-
ration along the magnetic field. If observed it would manifest local
parity violation in the strong interaction. A correlator sensitive to
the CME was proposed in Ref. [27]:〈
cos(φα + φβ − 2ΨR P )

〉
, (14)

where subscripts α, β denote the particle type. STAR [28,29], as
well as ALICE [30] measurements of this correlator are consis-
tent with the expectation for the CME. An ambiguity in the in-
terpretation of experimental results comes from a possible back-
ground of reaction plane dependent correlations not related to
CME. Note that a key ingredient to CME is the strong magnetic
field, while all the background effects originate from elliptic flow
[27]. This can potentially be used to experimentally resolve the
question. One possibility is to study the effect in central collisions
of non-spherical uranium nuclei [14], where the relative contri-
butions of the background (proportional to the elliptic flow) and
the CME (proportional to the magnetic field) should be very dif-
ferent in tip-tip and body–body type collisions. The second pos-
sibility would be to exploit the large flow fluctuations in heavy-
ion collisions as discussed in [14,31] and ESE would be a tech-
nique to perform such an analysis. (Note that the magnetic field
depends very weakly on the initial geometry fluctuations [31].)
Yet another test, proposed in [32], is based on the idea that
the charge separation along the magnetic field should be zero if
measured with respect to the 4-th harmonic event planes, while
the background effects due to flow should still be present, al-
beit smaller in magnitude (∼ v4). An example of such a corre-
lator, would be 〈cos(2φα + 2φβ − 4Ψ4〉, where Ψ4 is the fourth
harmonic event plane. The value of the background due to flow
could be estimated by rescaling the correlator Eq. (14). Such mea-
surements will require good statistics, and strong fourth harmonic
flow. Again, ESE can be very helpful to vary any effects related to
flow.
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Fig. 5. (Color online.) The same as in Fig. 3 but for the case of nonflow described in
the text.

4. Measuring the shape and freeze-out velocity profile with
azimuthally sensitive femtoscopy

Different shapes in the initial geometry of the collision will be
preserved to some degree in the system freeze-out shapes. It was
shown in [33] that those shapes can be measured experimentally
with azimuthally sensitive femtoscopic analysis [34,35]. Such an
analysis would definitely profit from events with extreme values
of anisotropy provided by ESE, as the variation of femtoscopic pa-
rameters with azimuth would be more pronounced. General details
of femtoscopic analyses and discussion of the experimental results
can be found in a review [36].

5. Summary

Event shape engineering, providing the possibility to select and
study events corresponding to nuclear collisions with different ini-
tial geometry configuration, promises to be a very useful new tool
to study the properties of the strongly interacting matter in ultra-
relativistic heavy ion collisions.
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