42 research outputs found

    Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa

    Full text link
    Horizontal gene transfer (HGT) plays a key role in bacterial evolution, especially with respect to antibiotic resistance. Fitness costs associated with mobile genetic elements (MGEs) are thought to constrain HGT, but our understanding of these costs remains fragmentary, making it difficult to predict the success of HGT events. Here we use the interaction between P. aeruginosa and a costly plasmid (pNUK73) to investigate the molecular basis of the cost of HGT. Using RNA-Seq, we show that the acquisition of pNUK73 results in a profound alteration of the transcriptional profile of chromosomal genes. Mutations that inactivate two genes encoded on chromosomally integrated MGEs recover these fitness costs and transcriptional changes by decreasing the expression of the pNUK73 replication gene. Our study demonstrates that interactions between MGEs can compromise bacterial fitness via altered gene expression, and we argue that conflicts between mobile elements impose a general constraint on evolution by HGT

    Simulating the Influence of Conjugative-Plasmid Kinetic Values on the Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model

    Full text link
    [EN] Bacterial plasmids harboring antibiotic resistance genes are critical in the spread of antibiotic resistance. It is known that plasmids differ in their kinetic values, i.e., conjugation rate, segregation rate by copy number incompatibility with related plasmids, and rate of stochastic loss during replication. They also differ in cost to the cell in terms of reducing fitness and in the frequency of compensatory mutations compensating plasmid cost. However, we do not know how variation in these values influences the success of a plasmid and its resistance genes in complex ecosystems, such as the microbiota. Genes are in plasmids, plasmids are in cells, and cells are in bacterial populations and microbiotas, which are inside hosts, and hosts are in human communities at the hospital or the community under various levels of cross-colonization and antibiotic exposure. Differences in plasmid kinetics might have consequences on the global spread of antibiotic resistance. New membrane computing methods help to predict these consequences. In our simulation, conjugation frequency of at least 10(-3) influences the dominance of a strain with a resistance plasmid. Coexistence of different antibiotic resistances occurs if host strains can maintain two copies of similar plasmids. Plasmid loss rates of 10(-4) or 10(-5) or plasmid fitness costs of >= 0.06 favor plasmids located in the most abundant species. The beneficial effect of compensatory mutations for plasmid fitness cost is proportional to this cost at high mutation frequencies (10(-3) to 10(-5)). The results of this computational model clearly show how changes in plasmid kinetics can modify the entire population ecology of antibiotic resistance in the hospital setting.F. Baquero, M. Campos, and T. M. Coque were supported by EU Joint Programming Initiative JPIAMR2016-AC16/00043 (JPIonAMR-Third call on Transmission, ST131TS project), the Health Institute Carlos III of Spain (grants PI15-00818 and PI18-01942 and CIBER [CIBER in Epidemiology and Public Health, CIBERESP; CB06/02/0053]), and the Regional Government of Madrid (InGEMICS-C; S2017/BMD-3691), all of them cofinanced by the European Development Regional Fund (ERDF) "A Way to Achieve Europe." A. San Millan was supported by the European Research Council under the European Union's Horizon 2020 Research and Innovation Program (ERC grant agreement number 757440-PLASREVOLUTION)Campos Frances, M.; San Millan, A.; Sempere Luna, JM.; Lanza, VF.; Coque, TM.; Llorens, C.; Baquero, F. (2020). Simulating the Influence of Conjugative-Plasmid Kinetic Values on the Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model. Antimicrobial Agents and Chemotherapy. 64(8):1-19. https://doi.org/10.1128/AAC.00593-20S119648De Gelder, L., Ponciano, J. M., Joyce, P., & Top, E. M. (2007). Stability of a promiscuous plasmid in different hosts: no guarantee for a long-term relationship. Microbiology, 153(2), 452-463. doi:10.1099/mic.0.2006/001784-0Norman, A., Hansen, L. H., & Sørensen, S. J. (2009). Conjugative plasmids: vessels of the communal gene pool. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1527), 2275-2289. doi:10.1098/rstb.2009.0037Andam, C. P., Fournier, G. P., & Gogarten, J. P. (2011). Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiology Reviews, 35(5), 756-767. doi:10.1111/j.1574-6976.2011.00274.xBaquero, F., Tedim, A. P., & Coque, T. M. (2013). Antibiotic resistance shaping multi-level population biology of bacteria. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00015Wein, T., Hülter, N. F., Mizrahi, I., & Dagan, T. (2019). Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nature Communications, 10(1). doi:10.1038/s41467-019-10600-7Yano, H., Shintani, M., Tomita, M., Suzuki, H., & Oshima, T. (2019). Reconsidering plasmid maintenance factors for computational plasmid design. Computational and Structural Biotechnology Journal, 17, 70-81. doi:10.1016/j.csbj.2018.12.001Gumpert, H., Kubicek-Sutherland, J. Z., Porse, A., Karami, N., Munck, C., Linkevicius, M., … Sommer, M. O. A. (2017). Transfer and Persistence of a Multi-Drug Resistance Plasmid in situ of the Infant Gut Microbiota in the Absence of Antibiotic Treatment. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.01852Durão, P., Balbontín, R., & Gordo, I. (2018). Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends in Microbiology, 26(8), 677-691. doi:10.1016/j.tim.2018.01.005Campos, M., Llorens, C., Sempere, J. M., Futami, R., Rodriguez, I., Carrasco, P., … Baquero, F. (2015). A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES). Biology Direct, 10(1). doi:10.1186/s13062-015-0070-9Campos, M., Capilla, R., Naya, F., Futami, R., Coque, T., Moya, A., … Baquero, F. (2019). Simulating Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model. mBio, 10(1), e02460-18. doi:10.1128/mbio.02460-1813. Baquero F, Campos M, Llorens C, Sempere JM. 2018. A model of antibiotic resistance evolution dynamics through P systems with active membranes and communication rules, p 33–44. In Graciani C, Agustín Riscos-Núñez A, Păun Gh, Rozenberg G, Salomaa A (ed), Enjoying natural computing. Springer, Cham, Switzerland.Leclerc, Q. J., Lindsay, J. A., & Knight, G. M. (2019). Mathematical modelling to study the horizontal transfer of antimicrobial resistance genes in bacteria: current state of the field and recommendations. Journal of The Royal Society Interface, 16(157), 20190260. doi:10.1098/rsif.2019.0260Blanquart, F. (2019). Evolutionary epidemiology models to predict the dynamics of antibiotic resistance. Evolutionary Applications, 12(3), 365-383. doi:10.1111/eva.1275316. Rozenberg G, Salomaa A, Păun G (ed). 2010. The Oxford handbook of membrane computing. Oxford University Press, Oxford, England.17. Păun G. 2002. Membrane computing. An introduction. Springer-Verlag, Heidelberg, Germany.Novais, A., Cantón, R., Moreira, R., Peixe, L., Baquero, F., & Coque, T. M. (2006). Emergence and Dissemination of Enterobacteriaceae Isolates Producing CTX-M-1-Like Enzymes in Spain Are Associated with IncFII (CTX-M-15) and Broad-Host-Range (CTX-M-1, -3, and -32) Plasmids. Antimicrobial Agents and Chemotherapy, 51(2), 796-799. doi:10.1128/aac.01070-06Mathers, A. J., Peirano, G., & Pitout, J. D. D. (2015). The Role of Epidemic Resistance Plasmids and International High-Risk Clones in the Spread of Multidrug-Resistant Enterobacteriaceae. Clinical Microbiology Reviews, 28(3), 565-591. doi:10.1128/cmr.00116-1420. Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, Schwarz S. 2018. Antimicrobial resistance in Escherichia coli, p 289–316. In Schwarz S, Cavaco LM, Shen J (ed), Antimicrobial resistance in bacteria from livestock and companion animals. ASM Press, Washington, DC.Livermore, D. M., & Hawkey, P. M. (2005). CTX-M: changing the face of ESBLs in the UK. Journal of Antimicrobial Chemotherapy, 56(3), 451-454. doi:10.1093/jac/dki23923. European Centre for Disease Prevention and Control. 2015. Antimicrobial resistance surveillance in Europe 2015. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). European Centre for Disease Prevention and Control, Stockholm, Sweden.Bush, K., & Fisher, J. F. (2011). Epidemiological Expansion, Structural Studies, and Clinical Challenges of New β-Lactamases from Gram-Negative Bacteria. Annual Review of Microbiology, 65(1), 455-478. doi:10.1146/annurev-micro-090110-102911Bush, K. (2018). Past and Present Perspectives on β-Lactamases. Antimicrobial Agents and Chemotherapy, 62(10). doi:10.1128/aac.01076-18Hawser, S. P., Bouchillon, S. K., Hoban, D. J., Badal, R. E., Cantón, R., & Baquero, F. (2010). Incidence and Antimicrobial Susceptibility of Escherichia coli and Klebsiella pneumoniae with Extended-Spectrum β-Lactamases in Community- and Hospital-Associated Intra-Abdominal Infections in Europe: Results of the 2008 Study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrobial Agents and Chemotherapy, 54(7), 3043-3046. doi:10.1128/aac.00265-10Simonsen, L., Gordon, D. M., Stewart, F. M., & Levin, B. R. (1990). Estimating the rate of plasmid transfer: an end-point method. Journal of General Microbiology, 136(11), 2319-2325. doi:10.1099/00221287-136-11-2319Levin, B. R., Stewart, F. M., & Rice, V. A. (1979). The kinetics of conjugative plasmid transmission: Fit of a simple mass action model. Plasmid, 2(2), 247-260. doi:10.1016/0147-619x(79)90043-xTurner, P. E., Williams, E. S. C. P., Okeke, C., Cooper, V. S., Duffy, S., & Wertz, J. E. (2014). Antibiotic resistance correlates with transmission in plasmid evolution. Evolution, 68(12), 3368-3380. doi:10.1111/evo.12537Porse, A., Schønning, K., Munck, C., & Sommer, M. O. A. (2016). Survival and Evolution of a Large Multidrug Resistance Plasmid in New Clinical Bacterial Hosts. Molecular Biology and Evolution, 33(11), 2860-2873. doi:10.1093/molbev/msw163Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. C., & de la Cruz, F. (2010). Mobility of Plasmids. Microbiology and Molecular Biology Reviews, 74(3), 434-452. doi:10.1128/mmbr.00020-1038. Taylor DE, Gibreel A, Tracz DM, Lawley TD. 2004. Antibiotic resistance plasmids, p 473–492. In Funnell BE, Phillips GJ (ed), Plasmid biology. American Society of Microbiology, Washington, DC.Million-Weaver, S., & Camps, M. (2014). Mechanisms of plasmid segregation: Have multicopy plasmids been overlooked? Plasmid, 75, 27-36. doi:10.1016/j.plasmid.2014.07.002Lau, B. T. C., Malkus, P., & Paulsson, J. (2013). New quantitative methods for measuring plasmid loss rates reveal unexpected stability. Plasmid, 70(3), 353-361. doi:10.1016/j.plasmid.2013.07.007Vogwill, T., & MacLean, R. C. (2014). The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evolutionary Applications, 8(3), 284-295. doi:10.1111/eva.12202Andersson, D. I., & Levin, B. R. (1999). The biological cost of antibiotic resistance. Current Opinion in Microbiology, 2(5), 489-493. doi:10.1016/s1369-5274(99)00005-3Andersson, D. I., & Hughes, D. (2010). Antibiotic resistance and its cost: is it possible to reverse resistance? Nature Reviews Microbiology, 8(4), 260-271. doi:10.1038/nrmicro2319Loftie-Eaton, W., Bashford, K., Quinn, H., Dong, K., Millstein, J., Hunter, S., … Top, E. M. (2017). Compensatory mutations improve general permissiveness to antibiotic resistance plasmids. Nature Ecology & Evolution, 1(9), 1354-1363. doi:10.1038/s41559-017-0243-2Zwanzig, M., Harrison, E., Brockhurst, M. A., Hall, J. P. J., Berendonk, T. U., & Berger, U. (2019). Mobile Compensatory Mutations Promote Plasmid Survival. mSystems, 4(1). doi:10.1128/msystems.00186-18Yang, Q. E., MacLean, C., Papkou, A., Pritchard, M., Powell, L., Thomas, D., … Walsh, T. R. (2020). Compensatory mutations modulate the competitiveness and dynamics of plasmid-mediated colistin resistance in Escherichia coli clones. The ISME Journal, 14(3), 861-865. doi:10.1038/s41396-019-0578-6Gama, J. A., Zilhão, R., & Dionisio, F. (2018). Impact of plasmid interactions with the chromosome and other plasmids on the spread of antibiotic resistance. Plasmid, 99, 82-88. doi:10.1016/j.plasmid.2018.09.009Harrison, E., Dytham, C., Hall, J. P. J., Guymer, D., Spiers, A. J., Paterson, S., & Brockhurst, M. A. (2016). Rapid compensatory evolution promotes the survival of conjugative plasmids. Mobile Genetic Elements, 6(3), e1179074. doi:10.1080/2159256x.2016.1179074Hall, J. P. J., Brockhurst, M. A., Dytham, C., & Harrison, E. (2017). The evolution of plasmid stability: Are infectious transmission and compensatory evolution competing evolutionary trajectories? Plasmid, 91, 90-95. doi:10.1016/j.plasmid.2017.04.00354. Shintani M, Suzuki H. 2019. Plasmids and their hosts, p 109–133. In Nishida H, Oshima T (ed), DNA traffic in the environment. Springer, Singapore.Komp Lindgren, P., Karlsson, A., & Hughes, D. (2003). Mutation Rate and Evolution of Fluoroquinolone Resistance in Escherichia coli Isolates from Patients with Urinary Tract Infections. Antimicrobial Agents and Chemotherapy, 47(10), 3222-3232. doi:10.1128/aac.47.10.3222-3232.2003Krone, S. M., Lu, R., Fox, R., Suzuki, H., & Top, E. M. (2007). Modelling the spatial dynamics of plasmid transfer and persistence. Microbiology, 153(8), 2803-2816. doi:10.1099/mic.0.2006/004531-0Baquero, F., Coque, T. M., & de la Cruz, F. (2011). Ecology and Evolution as Targets: the Need for Novel Eco-Evo Drugs and Strategies To Fight Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 55(8), 3649-3660. doi:10.1128/aac.00013-11Buckner, M. M. C., Ciusa, M. L., & Piddock, L. J. V. (2018). Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiology Reviews, 42(6), 781-804. doi:10.1093/femsre/fuy031Bush, K. (2008). Extended-spectrum β-lactamases in North America, 1987–2006. Clinical Microbiology and Infection, 14, 134-143. doi:10.1111/j.1469-0691.2007.01848.xJacoby, G. A., & Han, P. (1996). Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. Journal of clinical microbiology, 34(4), 908-911. doi:10.1128/jcm.34.4.908-911.1996Valverde, A., Coque, T. M., Sanchez-Moreno, M. P., Rollan, A., Baquero, F., & Canton, R. (2004). Dramatic Increase in Prevalence of Fecal Carriage of Extended-Spectrum  -Lactamase-Producing Enterobacteriaceae during Nonoutbreak Situations in Spain. Journal of Clinical Microbiology, 42(10), 4769-4775. doi:10.1128/jcm.42.10.4769-4775.2004Hernández, J. R., Martínez-Martínez, L., Cantón, R., Coque, T. M., & Pascual, A. (2005). Nationwide Study of Escherichia coli and Klebsiella pneumoniae Producing Extended-Spectrum β-Lactamases in Spain. Antimicrobial Agents and Chemotherapy, 49(5), 2122-2125. doi:10.1128/aac.49.5.2122-2125.2005PEREZ, F., ENDIMIANI, A., HUJER, K., & BONOMO, R. (2007). The continuing challenge of ESBLs. Current Opinion in Pharmacology, 7(5), 459-469. doi:10.1016/j.coph.2007.08.003Hernández-García, M., Pérez-Viso, B., Navarro-San Francisco, C., Baquero, F., Morosini, M. I., Ruiz-Garbajosa, P., & Cantón, R. (2019). Intestinal co-colonization with different carbapenemase-producing Enterobacterales isolates is not a rare event in an OXA-48 endemic area. EClinicalMedicine, 15, 72-79. doi:10.1016/j.eclinm.2019.09.005Jensen, R. B., & Gerdes, K. (1995). Programmed cell death in bacteria: proteic plasmid stabilization systems. Molecular Microbiology, 17(2), 205-210. doi:10.1111/j.1365-2958.1995.mmi_17020205.xStalder, T., Cornwell, B., Lacroix, J., Kohler, B., Dixon, S., Yano, H., … Top, E. M. (2020). Evolving Populations in Biofilms Contain More Persistent Plasmids. Molecular Biology and Evolution, 37(6), 1563-1576. doi:10.1093/molbev/msaa024McNally, A., Oren, Y., Kelly, D., Pascoe, B., Dunn, S., Sreecharan, T., … Corander, J. (2016). Combined Analysis of Variation in Core, Accessory and Regulatory Genome Regions Provides a Super-Resolution View into the Evolution of Bacterial Populations. PLOS Genetics, 12(9), e1006280. doi:10.1371/journal.pgen.1006280Baquero, M.-R., Galán, J. C., del Carmen Turrientes, M., Cantón, R., Coque, T. M., Martínez, J. L., & Baquero, F. (2005). Increased Mutation Frequencies in Escherichia coli Isolates Harboring Extended-Spectrum β-Lactamases. Antimicrobial Agents and Chemotherapy, 49(11), 4754-4756. doi:10.1128/aac.49.11.4754-4756.2005Baquero, F. (2004). From pieces to patterns: evolutionary engineering in bacterial pathogens. Nature Reviews Microbiology, 2(6), 510-518. doi:10.1038/nrmicro909Andersson, D. I., Balaban, N. Q., Baquero, F., Courvalin, P., Glaser, P., Gophna, U., … Tønjum, T. (2020). Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiology Reviews, 44(2), 171-188. doi:10.1093/femsre/fuaa001Jernberg, C., Löfmark, S., Edlund, C., & Jansson, J. K. (2010). Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology, 156(11), 3216-3223. doi:10.1099/mic.0.040618-0Sommer, F., Anderson, J. M., Bharti, R., Raes, J., & Rosenstiel, P. (2017). The resilience of the intestinal microbiota influences health and disease. Nature Reviews Microbiology, 15(10), 630-638. doi:10.1038/nrmicro.2017.58Novais, C., Tedim, A. P., Lanza, V. F., Freitas, A. R., Silveira, E., Escada, R., … Coque, T. M. (2016). Co-diversification of Enterococcus faecium Core Genomes and PBP5: Evidences of pbp5 Horizontal Transfer. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.0158

    High-titre methylene blue-treated convalescent plasma as an early treatment for outpatients with COVID-19: a randomised, placebo-controlled trial.

    Get PDF
    BACKGROUND: Convalescent plasma has been proposed as an early treatment to interrupt the progression of early COVID-19 to severe disease, but there is little definitive evidence. We aimed to assess whether early treatment with convalescent plasma reduces the risk of hospitalisation and reduces SARS-CoV-2 viral load among outpatients with COVID-19. METHODS: We did a multicentre, double-blind, randomised, placebo-controlled trial in four health-care centres in Catalonia, Spain. Adult outpatients aged 50 years or older with the onset of mild COVID-19 symptoms 7 days or less before randomisation were eligible for enrolment. Participants were randomly assigned (1:1) to receive one intravenous infusion of either 250-300 mL of ABO-compatible high anti-SARS-CoV-2 IgG titres (EUROIMMUN ratio ≥6) methylene blue-treated convalescent plasma (experimental group) or 250 mL of sterile 0·9% saline solution (control). Randomisation was done with the use of a central web-based system with concealment of the trial group assignment and no stratification. To preserve masking, we used opaque tubular bags that covered the investigational product and the infusion catheter. The coprimary endpoints were the incidence of hospitalisation within 28 days from baseline and the mean change in viral load (in log10 copies per mL) in nasopharyngeal swabs from baseline to day 7. The trial was stopped early following a data safety monitoring board recommendation because more than 85% of the target population had received a COVID-19 vaccine. Primary efficacy analyses were done in the intention-to-treat population, safety was assessed in all patients who received the investigational product. This study is registered with ClinicalTrials.gov, NCT04621123. FINDINGS: Between Nov 10, 2020, and July 28, 2021, we assessed 909 patients with confirmed COVID-19 for inclusion in the trial, 376 of whom were eligible and were randomly assigned to treatment (convalescent plasma n=188 [serum antibody-negative n=160]; placebo n=188 [serum antibody-negative n=166]). Median age was 56 years (IQR 52-62) and the mean symptom duration was 4·4 days (SD 1·4) before random assignment. In the intention-to-treat population, hospitalisation within 28 days from baseline occurred in 22 (12%) participants who received convalescent plasma versus 21 (11%) who received placebo (relative risk 1·05 [95% CI 0·78 to 1·41]). The mean change in viral load from baseline to day 7 was -2·41 log10 copies per mL (SD 1·32) with convalescent plasma and -2·32 log10 copies per mL (1·43) with placebo (crude difference -0·10 log10 copies per mL [95% CI -0·35 to 0·15]). One participant with mild COVID-19 developed a thromboembolic event 7 days after convalescent plasma infusion, which was reported as a serious adverse event possibly related to COVID-19 or to the experimental intervention. INTERPRETATION: Methylene blue-treated convalescent plasma did not prevent progression from mild to severe illness and did not reduce viral load in outpatients with COVID-19. Therefore, formal recommendations to support the use of convalescent plasma in outpatients with COVID-19 cannot be concluded. FUNDING: Grifols, Crowdfunding campaign YoMeCorono

    Prospective individual patient data meta-analysis of two randomized trials on convalescent plasma for COVID-19 outpatients

    Full text link
    Data on convalescent plasma (CP) treatment in COVID-19 outpatients are scarce. We aimed to assess whether CP administered during the first week of symptoms reduced the disease progression or risk of hospitalization of outpatients. Two multicenter, double-blind randomized trials (NCT04621123, NCT04589949) were merged with data pooling starting when = 50 years and symptomatic for <= 7days were included. The intervention consisted of 200-300mL of CP with a predefined minimum level of antibodies. Primary endpoints were a 5-point disease severity scale and a composite of hospitalization or death by 28 days. Amongst the 797 patients included, 390 received CP and 392 placebo; they had a median age of 58 years, 1 comorbidity, 5 days symptoms and 93% had negative IgG antibody-test. Seventy-four patients were hospitalized, 6 required mechanical ventilation and 3 died. The odds ratio (OR) of CP for improved disease severity scale was 0.936 (credible interval (CI) 0.667-1.311); OR for hospitalization or death was 0.919 (CI 0.592-1.416). CP effect on hospital admission or death was largest in patients with <= 5 days of symptoms (OR 0.658, 95%CI 0.394-1.085). CP did not decrease the time to full symptom resolution

    Cooperation, competition and antibiotic resistance in bacterial colonies

    Get PDF
    Bacteria commonly live in dense and genetically diverse communities associated with surfaces. In these communities, competition for resources and space is intense, and yet we understand little of how this affects the spread of antibiotic- resistant strains. Here, we study interactions between antibiotic-resistant and susceptible strains using in vitro competition experiments in the opportunistic pathogen Pseudomonas aeruginosa and in silico simulations. Selection for intracellular resistance to streptomycin is very strong in colonies, such that resistance is favoured at very low antibiotic doses. In contrast, selection for extracellular resistance to carbenicillin is weak in colonies, and high doses of antibiotic are required to select for resistance. Manipulating the density and spatial structure of colonies reveals that this difference is partly explained by the fact that the local degradation of carbenicillin by β-lactamase-secreting cells protects neighbouring sensitive cells from carbenicillin. In addition, we discover a second unexpected effect: the inducible elongation of cells in response to carbenicillin allows sensitive cells to better compete for the rapidly growing colony edge. These combined effects mean that antibiotic treatment can select against antibiotic-resistant strains, raising the possibility of treatment regimes that suppress sensitive strains while limiting the rise of antibiotic resistance. We argue that the detailed study of bacterial interactions will be fundamental to understanding and overcoming antibiotic resistance

    Microbial Evolution: Towards Resolving the Plasmid Paradox

    Get PDF
    SummaryPlasmids play a key role in bacterial evolution by providing bacteria with new and important functions, such as antibiotic resistance. New research shows how bacterial regulatory evolution can stabilize bacteria–plasmid associations and catalyze evolutionary innovation

    Global epistasis in plasmid-mediated antimicrobial resistance

    No full text
    Antimicrobial resistance (AMR) in bacteria is a major public health threat and conjugative plasmids play a key role in the dissemination of AMR genes among bacterial pathogens. Interestingly, the association between AMR plasmids and pathogens is not random and certain associations spread successfully at a global scale. The burst of genome sequencing has increased the resolution of epidemiological programs, broadening our understanding of plasmid distribution in bacterial populations. Despite the immense value of these studies, our ability to predict future plasmid-bacteria associations remains limited. Numerous empirical studies have recently reported systematic patterns in genetic interactions that enable predictability, in a phenomenon known as global epistasis. In this perspective, we argue that global epistasis patterns hold the potential to predict interactions between plasmids and bacterial genomes, thereby facilitating the prediction of future successful associations. To assess the validity of this idea, we use previously published data to identify global epistasis patterns in clinically relevant plasmid-bacteria associations. Furthermore, using simple mechanistic models of antibiotic resistance, we illustrate how global epistasis patterns may allow us to generate new hypotheses on the mechanisms associated with successful plasmid-bacteria associations. Collectively, we aim at illustrating the relevance of exploring global epistasis in the context of plasmid biology.Peer reviewe

    VanB-Type Enterococcus faecium Clinical Isolate Successively Inducibly Resistant to, Dependent on, and Constitutively Resistant to Vancomycin▿

    No full text
    Three Enterococcus faecium strains isolated successively from the same patient, vancomycin-resistant strain BM4659, vancomycin-dependent strain BM4660, and vancomycin-revertant strain BM4661, were indistinguishable by pulsed-field gel electrophoresis and harbored plasmid pIP846, which confers VanB-type resistance. The vancomycin dependence of strain BM4660 was due to mutation P175L, which suppressed the activity of the host Ddl d-Ala:d-Ala ligase. Reversion to resistance in strain BM4661 was due to a G-to-C transversion in the transcription terminator of the vanRSB operon that lowered the free energy of pairing from −13.08 to −6.65 kcal/mol, leading to low-level constitutive expression of the resistance genes from the PRB promoter, as indicated by analysis of peptidoglycan precursors and of VanXB d,d-dipeptidase activity. Transcription of the resistance genes, studied by Northern hybridization and reverse transcription, initiated from the PYB resistance promoter, was inducible in strains BM4659 and BM4660, whereas it started from the PRB regulatory promoter in strain BM4661, where it was superinducible. Strain BM4661 provides the first example of reversion to vancomycin resistance of a VanB-type dependent strain not due to a compensatory mutation in the ddl or vanSB gene. Instead, a mutation in the transcription terminator of the regulatory genes resulted in transcriptional readthrough of the resistance genes from the PRB promoter in the absence of vancomycin

    Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa

    No full text
    Horizontal gene transfer (HGT) plays a key role in bacterial evolution, especially with respect to antibiotic resistance. Fitness costs associated with mobile genetic elements (MGEs) are thought to constrain HGT, but our understanding of these costs remains fragmentary, making it difficult to predict the success of HGT events. Here we use the interaction between P. aeruginosa and a costly plasmid (pNUK73) to investigate the molecular basis of the cost of HGT. Using RNA-Seq, we show that the acquisition of pNUK73 results in a profound alteration of the transcriptional profile of chromosomal genes. Mutations that inactivate two genes encoded on chromosomally integrated MGEs recover these fitness costs and transcriptional changes by decreasing the expression of the pNUK73 replication gene. Our study demonstrates that interactions between MGEs can compromise bacterial fitness via altered gene expression, and we argue that conflicts between mobile elements impose a general constraint on evolution by HGT.ISSN:2041-172
    corecore