61 research outputs found

    Objective evaluation of Parkinson's disease bradykinesia

    Get PDF
    Bradykinesia is the fundamental motor feature of Parkinson’s disease - obligatory for diagnosis and central to monitoring. It is a complex clinicalsign that describes movements with slow speed, small amplitude, irregular rhythm, brief pauses and progressive decrements. Clinical ascertainment of the presence and severity of bradykinesia relies on subjective interpretation of these components, with considerable variability amongst clinicians, and this may contribute to diagnostic error and inaccurate monitoring in Parkinson’s disease. The primary aim of this thesis was to assess whether a novel non-invasive device could objectively measure bradykinesia and predict diagnostic classification of movement data from Parkinson’s disease patients and healthy controls. The second aim was to evaluate how objective measures of bradykinesia correlate with clinical measures of bradykinesia severity. The third aim was to investigate the characteristic kinematic features of bradykinesia. Forty-nine patients with Parkinson’s disease and 41 healthy controls were recruited in Leeds. They performed a repetitive finger-tapping task for 30 seconds whilst wearing small electromagnetic tracking sensors on their finger and thumb. Movement data was analysed using two different methods - statistical measures of the separable components of bradykinesia and a computer science technique called evolutionary algorithms. Validation data collected independently from 13 patients and nine healthy controls in San Francisco was used to assess whether the results generalised. The evolutionary algorithm technique was slightly superior at classifying the movement data into the correct diagnostic groups, especially for the mildest clinical grades of bradykinesia, and they generalised to the independent group data. The objective measures of finger tapping correlated well with clinical grades of bradykinesia severity. Detailed analysis of the data suggests that a defining feature of Parkinson’s disease bradykinesia called the sequence effect may be a physiological rather than a pathological phenomenon. The results inform the development of a device that may support clinical diagnosis and monitoring of Parkinson’s disease and also be used to investigate bradykinesia

    How to use pen and paper tasks to aid tremor diagnosis in the clinic

    Get PDF
    When a patient presents with tremor, it can be useful to perform a few simple pen and paper tests. In this article, we explain how to maximise the value of handwriting and of drawing Archimedes spirals and straight lines as clinical assessments. These tasks take a matter of seconds to complete but provide a wealth of information that supplements the standard physical examination. They aid the diagnosis of a tremor disorder and can contribute to its longitudinal monitoring. Watching the patient’s upper limb while they write and draw may reveal abnormalities such as bradykinesia, dystonic posturing and distractibility. The finished script and drawings can then be evaluated for frequency, amplitude, direction and symmetry of oscillatory pen movements and for overall scale of penmanship. Essential, dystonic, functional and parkinsonian tremor each has a characteristic pattern of abnormality on these pen and paper tests

    A History of Dystonia: Ancient to Modern

    Get PDF
    Before 1911, when Hermann Oppenheim introduced the term dystonia, this movement disorder lacked a unifying descriptor. While words like epilepsy, apoplexy, and palsy have had their meanings since antiquity, references to dystonia are much harder to identify in historical documents. Torticollis is an exception, although there is difficulty distinguishing dystonic torticollis from congenital muscular torticollis. There are, nevertheless, possible representations of dystonia in literature and visual art from the pre-modern world. Eighteenth century systematic nosologists such as Linnaeus, de Sauvages, and Cullen had attempted to classify some spasmodic conditions, including torticollis. But only after Charcot's contributions to clinical neuroscience were the various forms of generalized and focal dystonia clearly delineated. They were categorized as névroses: Charcot's term for conditions without an identifiable neuroanatomical cause. For a time thereafter, psychoanalytic models of dystonia based on Freud's ideas about unconscious conflicts transduced into physical symptoms were ascendant, although there was always a dissenting “organic” school. With the rise of subspecialization in movement disorders during the 1970s, the pendulum swung strongly back toward organic causation. David Marsden's clinical and electrophysiological research on the adult-onset focal dystonias was particularly important in establishing a physical basis for these disorders. We are still in a period of “living history” of dystonia, with much yet to be understood about pathophysiology. Rigidly dualistic models have crumbled in the face of evidence of electrophysiological and psychopathological overlap between organic and functional dystonia. More flexible biopsychosocial frameworks may address the demand for new diagnostic and therapeutic rationales

    Health at the writing desk of John Ruskin: a study of handwriting and illness

    Get PDF
    Though John Ruskin (1819 – 1900) is remembered principally for his work as a theorist, art critic, and historian of visual culture, he wrote exhaustively about his health in his correspondence and diaries. Ruskin was prone to recurring depressive and hypochondriacal feelings in his youth and adulthood. In 1871, at the age of 52, he developed an illness with relapsing psychiatric and neurological features. He had a series of attacks of brain disturbance, and a deterioration of his mental faculties affected his writing for years before curtailing his career a decade before he died. Previous writers have suggested he had a psychiatric malady, perhaps schizophrenia or schizo-affective disorder. But the more obvious conclusion from a close medical reading of Ruskin’s descriptions of his illness is he had some sort of ‘organic’ brain illness. This paper aims to give insight into the relationship between Ruskin’s state of wellbeing and the features of his writing through a palaeographical study of his letters and diary entries. We examine the handwriting for physical traces of Ruskin’s major brain illness, guided by the historical narrative of the illness. We also examine Ruskin’s recording of his experiences for what they reveal about the failure of his health and its impact on his work. Ruskin’s handwriting does not have clear-cut pathological features before around 1885, though suggestions of subtle writing deficits were present as early as 1876. After 1887, Ruskin’s handwriting shows fixed pathological signs—tremor, disturbed letter formation and features that reflect a slow and laborious process of writing. These observations are more than could be explained by normal ageing, and suggest the presence of a neurological deficit affecting writing control. Our findings are consistent with conclusions that we drew from the historical record—that John Ruskin had an organic neurological disorder with cognitive, behavioural, psychiatric, and motor effects

    The discerning eye of computer vision: can it measure Parkinson's finger tap bradykinesia?

    Get PDF
    Objective: The worldwide prevalence of Parkinson's disease is increasing. There is urgent need for new tools to objectively measure the condition. Existing methods to record the cardinal motor feature of the condition, bradykinesia, using wearable sensors or smartphone apps have not reached large-scale, routine use. We evaluate new computer vision (artificial intelligence) technology, DeepLabCut, as a contactless method to quantify measures related to Parkinson's bradykinesia from smartphone videos of finger tapping. Methods: Standard smartphone video recordings of 133 hands performing finger tapping (39 idiopathic Parkinson's patients and 30 controls) were tracked on a frame-by-frame basis with DeepLabCut. Objective computer measures of tapping speed, amplitude and rhythm were correlated with clinical ratings made by 22 movement disorder neurologists using the Modified Bradykinesia Rating Scale (MBRS) and Movement Disorder Society revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Results: DeepLabCut reliably tracked and measured finger tapping in standard smartphone video. Computer measures correlated well with clinical ratings of bradykinesia (Spearman coefficients): -0.74 speed, 0.66 amplitude, -0.65 rhythm for MBRS; -0.56 speed, 0.61 amplitude, -0.50 rhythm for MDS-UPDRS; -0.69 combined for MDS-UPDRS. All p Conclusion: New computer vision software, DeepLabCut, can quantify three measures related to Parkinson's bradykinesia from smartphone videos of finger tapping. Objective 'contactless' measures of standard clinical examinations were not previously possible with wearable sensors (accelerometers, gyroscopes, infrared markers). DeepLabCut requires only conventional video recording of clinical examination and is entirely 'contactless'. This next generation technology holds potential for Parkinson's and other neurological disorders with altered movements

    What type of tremor did the medieval ‘Tremulous Hand of Worcester’ have?

    Get PDF
    The thirteenth-century medieval scribe, the ‘Tremulous Hand of Worcester’ is known for the tremor visible in his script. Thorpe and Alty combine historical analysis with the first neurological study of the scribe’s handwriting. After considering various differential diagnoses, they conclude that the balance of evidence favours essential tremor

    Rapid-Motion-Track: Markerless Tracking of Fast Human Motion with Deeper Learning

    Full text link
    Objective The coordination of human movement directly reflects function of the central nervous system. Small deficits in movement are often the first sign of an underlying neurological problem. The objective of this research is to develop a new end-to-end, deep learning-based system, Rapid-Motion-Track (RMT) that can track the fastest human movement accurately when webcams or laptop cameras are used. Materials and Methods We applied RMT to finger tapping, a well-validated test of motor control that is one of the most challenging human motions to track with computer vision due to the small keypoints of digits and the high velocities that are generated. We recorded 160 finger tapping assessments simultaneously with a standard 2D laptop camera (30 frames/sec) and a high-speed wearable sensor-based 3D motion tracking system (250 frames/sec). RMT and a range of DLC models were applied to the video data with tapping frequencies up to 8Hz to extract movement features. Results The movement features (e.g. speed, rhythm, variance) identified with the new RMT system exhibited very high concurrent validity with the gold-standard measurements (97.3\% of RMT measures were within +/-0.5Hz of the Optotrak measures), and outperformed DLC and other advanced computer vision tools (around 88.2\% of DLC measures were within +/-0.5Hz of the Optotrak measures). RMT also accurately tracked a range of other rapid human movements such as foot tapping, head turning and sit-to -stand movements. Conclusion: With the ubiquity of video technology in smart devices, the RMT method holds potential to transform access and accuracy of human movement assessment

    Supervised classification of bradykinesia for Parkinson’s disease diagnosis from smartphone videos

    Get PDF
    Slowness of movement, known as bradykinesia, in an important early symptom of Parkinson’s disease. This symptom is currently assessed subjectively by clinical experts. However, expert assessment has been shown to be subject to inter-rater variability. We propose a low-cost, contactless system using smartphone videos to automatically determine the presence of bradykinesia. Using 70 videos recorded in a pilot study, we predict the presence of bradykinesia with an estimated test accuracy of 0.79 and the presence of Parkinson’s disease diagnosis with estimated test accuracy 0.63. Even on a small set of pilot data this accuracy is comparable to that recorded by blinded human experts

    Computational approaches for understanding the diagnosis and treatment of Parkinson's disease

    Get PDF
    This study describes how the application of evolutionary algorithms (EAs) can be used to study motor function in humans with Parkinson’s disease (PD) and in animal models of PD. Human data is obtained using commercially available sensors via a range of non-invasive procedures that follow conventional clinical practice. EAs can then be used to classify human data for a range of uses, including diagnosis and disease monitoring. New results are presented that demonstrate how EAs can also be used to classify fruit flies with and without genetic mutations that cause Parkinson’s by using measurements of the proboscis extension reflex. The case is made for a computational approach that can be applied across human and animal studies of PD and lays the way for evaluation of existing and new drug therapies in a truly objective way
    corecore