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Abstract: This study describes how the application of evolutionary algorithms (EAs) can be used to study motor function in
humans with Parkinson’s disease (PD) and in animal models of PD. Human data is obtained using commercially available
sensors via a range of non-invasive procedures that follow conventional clinical practice. EAs can then be used to classify
human data for a range of uses, including diagnosis and disease monitoring. New results are presented that demonstrate
how EAs can also be used to classify fruit flies with and without genetic mutations that cause Parkinson’s by using
measurements of the proboscis extension reflex. The case is made for a computational approach that can be applied
across human and animal studies of PD and lays the way for evaluation of existing and new drug therapies in a truly
objective way.
1 Introduction

Parkinson’s disease (PD) is the second most common
neurodegenerative disease and its prevalence is likely to increase
dramatically over the next decade as people live longer [1].
Conventional diagnostic approaches for PD are based on clinical
observation and this subjective approach can be unreliable,
especially at early stages of disease. Monitoring of response to
treatment, where the rate of improvement or deterioration may be
modest, is difficult to objectively quantify.

Tools that provide straightforward, objective measurement of
disease progression would allow better tailoring of treatments to
individuals with PD, improving quality of life and maximising
health system resources. When disease-modifying drugs become
available for PD the need for early, accurate diagnosis and
effective measurement of response to treatment will become even
more important.

This paper describes computational approaches using
evolutionary algorithms (EAs) that provide clinically relevant
objective measures to identify and to quantify PD, both in humans
and animal models. We begin by providing an overview of the
diagnosis and monitoring of PD in humans. Thereafter two animal
models of PD, the fruit fly (Drosophila melanogaster) and the
zebrafish (Danio rerio), will be discussed. An overview of EAs
will be provided and then a description of how we have used EAs
to study motor function in humans and animal models not only to
provide effective classifiers for discrimination between disease and
controls, but also between disease types.
2 Parkinson’s disease

PD is a progressive, incurable neurodegenerative condition
characterised by distinct pathological changes including a loss of
dopamine containing brain cells. A lack of dopamine in the brain
causes a movement disorder, or ‘motor dysfunction’, characterised
by slowness (‘bradykinesia’), stiffness (‘rigidity’), shaking of the
body (‘tremor’) and impaired balance (‘postural instability’).
Bradykinesia is a complex clinical sign and consists of a number
of separable components such as the speed, frequency and rhythm
of a movement. As well as slowness of movement, those with PD
often exhibit a reduction in the amplitude of movements
(‘hypokinesia’) or absence of movement altogether (‘akinesia’).

The cause of the majority of cases of PD is unknown, and
clinicians often refer to this sporadic form as ‘idiopathic PD’.
Only 5 to 15% of PD cases are familial and a number of causative
autosomal dominant and recessive genetic mutations have been
identified. All ethnic groups and countries are affected by PD [2];
approximately 1 in 500 of the whole population and 1 in 100 of
those aged over 60 years [3]. The mean age of onset is 60 years,
and incidence increases with age, but 5% of cases present before
the age of 40.
2.1 Diagnosis of PD

The diagnosis of PD is primarily based on clinical interpretation of
symptoms and signs elicited through history taking and
examination. Sometimes it is straightforward for a doctor to make
a confident diagnosis of PD, especially if there are several striking
abnormal findings. However there are a number of other
neurological conditions that can manifest with the same, or very
similar, abnormal clinical signs, for example essential tremor (ET)
or progressive supranuclear palsy (PSP). These conditions have
most overlap during the early stages and it may be difficult to
make an accurate diagnosis of PD based solely on clinical
assessment, especially if the clinical findings are subtle or few.

Community studies suggest that at least 15–26% of people with a
diagnosis of PD have been misdiagnosed [4, 5] and pathological
studies broadly support these findings with 10–24% of clinical PD
cases not confirmed at post mortem [6–8]. Even consultant
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neurologists with specific expertise in PD have been shown to
misdiagnose PD for other tremor disorders with sensitivity/
specificity in the range of 0.72–0.93/0.79–0.86 [9].

If there is some diagnostic uncertainty after the initial clinical
evaluation a period of ‘watchful waiting’ may be recommended,
typically for 6 to 12 months. This allows the symptoms and signs
to progress further in order for the diagnosis to hopefully be made
with more confidence. In cases where this method is unacceptable
to the patient or clinician, or the interval review has still not
helped, ancillary tests may be employed to supplement clinical
assessment and aid diagnosis making.

Over the last decade, single photon emission computed
tomography (SPECT) scans that quantify the number of dopamine
containing brain cells have played an important role in aiding
accurate diagnosis of PD. The scans are abnormal in PD but they
are normal in ET and some other differential diagnoses such as
dystonic tremor. However, they are not specific for PD and may
also be abnormal in other conditions such as PSP, thus limiting
their usefulness in aiding PD diagnosis. SPECT scans are
expensive, typically costing at least £600 each; they involve
administering ionising radiation to the patient and are not available
in all healthcare settings. There are no routinely used blood or
spinal fluid tests to diagnose PD and standard CT and MRI brain
scans are not usually helpful in the early stages of PD or its mimics.

In summary, the fallibility of clinical opinion, taken together with
the limitations of radionuclide SPECT scans, means that there
remains a real need for new tests that can help accurately diagnose
and monitor PD.
2.2 Treatment and monitoring of PD

Treatment of PD usually involves patients taking oral medications
several times a day. The drugs work by increasing brain dopamine
levels and this improves motor function for several hours.
Unfortunately though, after several years, most patients develop
two troublesome drug side effects called ‘dyskinesia’ and ‘wearing
off’. Dyskinesia means that body parts will writhe or jerk
involuntarily and is often caused by drug levels being too high in
the body. ‘Wearing off’ means the duration of each drug dose
reduces so that the motor symptoms return unpredictably. Both of
these side effects, taken together with the progressive nature of
PD, results in increasingly more complicated drug regimens being
required to keep the symptoms under control.

Patients with PD vary in terms of how they respond to the
therapeutic and adverse effects of medications, how their
symptoms progress, how other illnesses interact with the disease
and its treatment, and how well they can recognise and report the
signs and symptoms of PD. Thus it is very important that they are
monitored to optimise their clinical management and to minimise
functional disability. Typically clinical monitoring is undertaken
during a 15 min clinic appointment every 6 months or so. This
method provides only a brief ‘snapshot’ of the patient’s status and
may not accurately reflect their functional impairment on a
day-to-day basis, particularly as motor dysfunction in PD can
fluctuate. Patient-completed symptom diaries are sometimes used
to gather more clinical data to supplement the clinic appointment
review. They may be useful in a small subset of patients but
generally are considered unhelpful as many patients simply find
them too onerous to fill out regularly and the data from diaries has
been shown to correlate poorly with clinician assessments [10].
This latter point may be due to the fact that many PD patients are
unaware of their own motor symptoms [11, 12].

The second important reason why PD patients require monitoring
is for research studies. This typically involves serial detailed clinical
measurements of impairment and disability using formal clinical
rating scales. Whilst such scales allow a degree of standardisation
across studies, they have a number of pertinent drawbacks such as
length of time to complete the various assessments, limitations of
using coarse-grained scales of severity, and the necessary
subjective interpretation that results in inter-rater variability. Thus
there is a real need for an accurate objective measure of PD
2

clinical signs to improve the quality of monitoring for clinical and
research purposes

2.3 Objective approaches to measuring PD

The scope for improving diagnosis of PD using automated and
objective methods have been explored for many years and much
progress has been made using a range of technologies and data
processing approaches. Previous work can be summarised in terms
of the particular symptoms of interest, the sensors employed to
measure these symptoms and the methods used to analyse the
resulting data.

Abnormal movement of the limbs and trunk in PD can be
measured with accelerometers [13] gyroscopes [14],
electromagnetic (EM) tracking sensors [15], line of sight tracking
systems [16] and video motion capture [17]. Speech problems in
PD can be measured using audio recordings and specialised
devices such as the Laryngograph [18]. Cognitive problems in PD
can be measured using conventional clinical and specialised tasks
such as figure copying tests (using digitising tablets) [19], memory
tasks [20], measuring reaction time [21] and completing
questionnaires.

The subsequent analysis and classification of the data resulting
from these sensors include conventional statistical approaches as
well as machine learning including neural networks, support vector
machine and EAs. EAs are the focus of the work presented in this
paper and are considered in more detail in Section 4.
3 Animal models of PD

As already discussed, idiopathic PD is the most common form of PD
in humans. Although the familial forms of PD are less common,
studying the genes that are disrupted in these patients is beginning
to provide a better understanding of what causes idiopathic PD.
Elucidating the molecular function of the products of the genes
that are mutated in some people with familial PD will shed light
on the fundamental cellular and molecular processes underlying
the disease. Understanding human pathogenesis at the cellular and
molecular level relies on the use of animal models [22]. Because
mouse models of PD have been disappointing [22] we will discuss
the use of two genetic models for studying PD, the fruit fly
(D. melanogaster) and the zebrafish (D. rerio).

3.1 Drosophila

Drosophila (D. melanogaster) is the best understood of all model
organisms; this is largely due to its sophisticated genetics [23].
Because of the small size of Drosophila and its short life cycle of
only 2 weeks, it has been used extensively in genetic research for
more than 100 years and over this time vast numbers of mutants
have been collected and accurate cytological and genetic maps of
the chromosomes have been made.

Robust methods have been developed for mutating genes in
specific tissues, at specific times or in response to a stimulus and
used to investigate gene function. Importantly, it is known that
many of the genes that control processes in the fruit fly are the
same genes that control the same processes in vertebrates,
including humans [24]. Indeed, flies share over 75% of genes
linked to human disease. The highly conserved nature of the
genetic control of biological processes means that what we learn
from studies of the fruit fly is relevant to understanding human
biology and disease.

Flies have provided an excellent model of genetic forms of PD
[25], reflecting many features of the disease including loss of
dopaminergic neurons, oxidative stress, mitochondrial
abnormalities and reduced movement. Traditionally, movement has
been recorded by timing the speed at which flies walk up a glass
cylinder in response to a sharp tap [26–28]. This conflates their
response to the startle stimulus, gravity and the central pattern
generator for walking with the motor neuron and muscular
IET Syst. Biol., pp. 1–8
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physiology. This assay also fails to discriminate between the
different possible movement defects (akinesia, hypokinesia and
bradykinesia). Nor is it clear which of the sensory, motor and
CNS processes contributing to the climbing response are
influenced by dopamine and/or the expression of PD related genes.
The multifaceted ‘bradykinesia’ seen in these mutants, and the
difficulty of relating it to neuronal function, suggest we need
another, simpler assay system.

The requirement for a simpler assay is reinforced by the difficulty
of determining which dopaminergic neurons are critical for
controlling locomotion. The fly brain contains ∼125 dopaminergic
neurons [29, 30], mostly grouped into clusters [31]. Most
manipulations of PD-related transgenes result in a relatively small
number of dopaminergic neurons dying, with many clusters
unaffected. In a recent study of the LRRK2-G2019S mutation, the
protocerebral posterior medial cluster dropped from 14 to 12
dopaminergic neurons without loss in others, for example, the
protocerebral anterior lateral cluster [32]. Throughout the literature,
the multiple processes involved in bradykinesia combine with the
small loss of dopaminergic neurons to obscure the functional
relationship. To progress, we need to link a precise measurement
of movement with the physiology of a few specific dopaminergic
neurons.

The discovery of dopaminergic modulation of the proboscis
extension response (PER) presents an exciting way forward [33].
When a walking fly encounters a sweet solution, the
chemosensory cells on its front legs respond (Fig. 1, step 1). Their
axons signal to the sub-oesophageal ganglion (SOG; the part of
the brain responsible for taste, Fig. 1, step 2). Within the SOG, the
chemosensory inputs activate a single dopaminergic neuron
(Fig. 1, step 3) [35]. Action potentials in the single dopaminergic
neuron are sufficient to excite the pharyngeal E49 motoneurons
[36] (Fig. 1, step 4), leading to contraction of a proboscis muscle
(Fig. 1, step 5, muscle M3). This well-defined pathway results in
the extrusion of the proboscis towards the food (Fig. 1, step 6).
This simple reflex circuit allows the fly to feed on the sweet
solution. A key observation is that genetic silencing of the single
dopaminergic neuron prevents the PER, while ‘thermogenetic’
activation of this cell elicits the full PER [35].
Fig. 1 Outline schematic of the PER pathway, showing the essential
neuronal circuit. Sugar applied to the legs (step 1) stimulates the
chemosensory neurons which project to the SOG. This contains a single
dopaminergic neuron (yellow, DA, step 3), which modulates the connection
between the sensory endings and the E49 motoneurons. When the sensory
-motor relay is permitted by dopaminergic activity, the E49 neurons fire
(step 4), causing contraction of the muscle, M3 (step 5), and extension of
the proboscis (step 6) [After Scott et al., [34]]
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The fly GAL4/UAS system [37, 38], a biochemical method used
to study gene expression, provides the tools for neuron-specific
expression of PD related genes – for example, the tyrosine
hydoxylase (TH) GAL4 can be used to express the
LRRK2-G2019S mutation, which is the most common cause of PD
in all dopaminergic neurons, while the Gr5a GAL4 will express
the transgene in just the sugar-sensitive neurons, or the GAD
GAL4 in just the GABAergic inhibitory neurons. Equally, other
PD related mutations (e.g. LRRK2-R1441C), or the wild-type
hLRRK2, can be expressed by using the TH GAL4, by using the
appropriate UAS sequence. Fly genetics also provides advanced
tools for expression in subsets of neurons, for example, just a
proportion of the dopaminergic neurons. In addition, the use of
genetically encoded voltage or calcium sensing dyes [39] offers
opportunities to record neural action potentials and/or synaptic
activity during the sensory reflex.

In Drosophila, we therefore tested if expression of the
LRRK2-G2019S transgene in dopaminergic neurons (TH >
G2019S) affected the PER. We found 31% of these flies
responded (N = 180), compared with 50% of flies expressing the
wild-type hLRRK2 transgene in the dopaminergic neurons (TH >
hLRRK2, N = 160, flies 3 days old). This difference was significant
(χ2 1df = 10.2, P = 0.0013). In older flies, (kept for 14 days at 29°
C), the same result was found. Only 49% of the TH >G2019S
(PD- mimic flies, N = 109) responded, compared with 66% of TH
> hLRRK2 flies (N = 130, χ21df = 7.49, P = 0.006). This
demonstrates the PER in the PD-mimic (TH >G2019S) have a
form of akinesia. In addition, the PER seems slower in old TH >
G2019S flies compared with controls of the same age. We
recorded video under a Zeiss Stemi microscope, and found that the
TH >G2019S PER took approximately 1.5 as long as the control
TH > hLRRK2 response (0.52 ± 0.05 s v 0.34 ± 0.03 s; F1,19df = 8.3
P = 0.01). These observations suggest that the PER displays both
akinesia and hypokinesia in flies expressing the PD-related
mutation, TH >G2019S.

In summary, Drosophila provides a powerful genetic toolbox, it
mimics many of the features of PD, and has a simple nervous
system which can be explored to show dopaminergic expression of
PD related genes generates a movement disorder.
3.2 Zebrafish

One major problem with using Drosophila as an animal model for
human disease is that it is an invertebrate and its anatomy and
physiology is therefore different from ours. Humans are vertebrates
characterised by having a dorsal spinal cord and a similar
organisation of neurons within the central nervous system.
Harnessing the power of genetic analysis within a vertebrate
animal model would improve the prospects for understanding
human genetic disease. Over the last 25 years, the zebrafish
(D. rerio) has been used as a vertebrate genetic model to study
development and disease. Very recent advances in genomic
editing, and the simplicity of using these new tools in zebrafish,
will provide a powerful method for modelling human genetic
disease.

Zebra fish produce thousands of embryos when they spawn and
these are useful because they develop outside the mother, are
translucent, are easily injected, and are genetically tractable. One
example of a human disease that has a zebrafish model is
Duchenne’s muscular dystrophy (DMD) [40]. There are zebrafish
with a mutation in the dystrophin gene, the same gene that is
defective in human patients with DMD, and in both humans and
fish with this genotype the muscles degenerate and die. The
zebrafish mutant for dystrophin was identified in a large-scale
genetic screen [41] and these fish are currently being used for in
vivo drug screens and real time analysis of muscle fibre loss. The
identification of the dystrophin mutant was random and fortunate,
but it was not directed.

One zebrafish mutant for a PD-associated gene has been identified
in Pink 1 [42]. The pink1-/- zebrafish was found to have
characteristics associated with human PD, such as loss of
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dopaminergic neurons and mitochondrial impairment. However, the
method used to identify this mutation (targeting induced lesions in
genomes) also relies on random mutation of the genome and a
PCR based screen for mutations in specific genes [43]. It is now
possible to undertake directed mutagenesis of genomes that until
very recently was only possible using homologous recombination
in mouse embryonic stem cells [43, 44]

There are significant new technologies that are making gene
targeting not only possible but also practical. transcription
activator-like effector nucleases (TALENs) are synthetic restriction
endonucleases, comprising a DNA binding domain fused to one
part of an endonuclease; specificity is ensured by a second
TALEN that binds to an adjacent sequence and provides the other
part of the nuclease. Each TALEN fusion protein can be
specifically designed to bind to a DNA sequence flanking the
region of the genome to be targeted resulting in cleavage of
genomic DNA at the target site. Subsequent non-homologous end
joining repair at the cleavage site results in the excision or
insertion of a variable number of base pairs. If the TALENS are
targeted to a protein coding exon, typically exon 1, the result is
likely to be a mutant gene coding for a non-functional truncated
protein [45].

Another new technology for gene editing is the clustered regularly
interspersed short palindromic repeat (CRISPR)-Cas9 system [43].
Similar to TALENs, the CRISPR-Cas9 system is another method
to induce double stranded breaks in genomic DNA. The breaks are
repaired by a cellular process called non-homologous end-joining.
This process is error prone and leads to insertions or deletions that
can disrupt the coding region of the targeted gene. The advantage
of the CRISPR system is that it is driven by a guide strand RNA
that undergoes standard base-pairing with the endogenous genomic
target. The cas9 nuclease is recruited to the guide strand RNA and
therefore to the target sequence. The simplicity of this system
makes it practical for most labs experienced in molecular biology.

The key feature of these new technologies is that unlike many
antisense knock-down and silencing strategies that have been
widely used over the last 15 years to post-transcriptionally inhibit
genes, TALENs and CRISPR-cas9 produce heritable gene
disruption and germ line transmission of targeted mutation. This
technology is effective in zebrafish and allows the efficient
production of mutation targeted to genes of interest. To date,
approximately 16 loci have been associated with PD [46]. Creating
zebrafish mutants to model for each of these genes is now a
practical and achievable goal.
4 Evolutionary algorithms

EAs [47] are a form of evolutionary computation and members of the
artificial intelligence family, or more precisely computational
intelligence, as they depend on a form of learning inspired by
Darwinian evolution. They are in effect a number (or population)
of candidate solutions (individuals) to a classification problem that
are repeatedly refined (or evolved) over a number of iterations
Fig. 2 Example Cartesian Genetic Program. Node number is specified in the top r
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(generations) until a suitably accurate classifier algorithm is
obtained or the computational resources have been exhausted.

The procedure for finding a classifier, for example to discriminate
PD patient data from healthy control data, can be summarised as
follows: A population of individuals (candidate solutions) is
randomly initialised. The effectiveness or fitness of each individual
to correctly classify data previously obtained from PD patients and
healthy controls is determined using a fitness function. The fittest
individual (the one with the highest fitness score determined by
the fitness function) is retained and the others discarded. Copies
(or clones) of this fittest individual are then generated and subtly
modified (or mutated) to form a new population of individuals.
The fitness of this new population of individuals is then evaluated
in the same way using the fitness function and the process is
repeated over a number of generations until a sufficiently fit
classifier is obtained or the number of predetermined generations
has been reached.

Many different types of evolutionary algorithm have been
developed which specify not only the characteristics of the
evolutionary process but also the representation of the individual
candidate solutions. For our work Cartesian genetic programming
(CGP) [48] is used, which does not adopt the tree structure
representation of traditional genetic programming. In CGP each
individual is represented by a network of processing nodes that are
arranged in a non-cyclic directed graph (two-dimensional grid).

A simplified example of a CGP network is shown in Fig. 2 with
four central processing nodes arranged in a 2 × 2 grid. Two inputs,
I/P 0 and I/P 1, provide input values to the network and an output,
O/P 0, its result. Each node within the network comprises a
function taken from a predefined set (an example of which is
given in Table 1). Outputs from each of the nodes are connected
to inputs of nodes to the right or the output. Nodes in the network
are numbered consecutively starting at zero with the first of the
input nodes, as shown in the top right-hand side corner of each
node in Fig. 2. This allows the nodes within the network to be
represented by a string of integers (or chromosome), an example
of which is given in Fig. 3.

The chromosome representing any CGP network consists of
triplets (referred to as genes), providing values for each respective
(non-input) node in the network, for example, the first triplet
relates to node number 2, the second to the node number 3, and so
on. The first two genes of each triplet specify preceding nodes in
the network that provide values to the node’s two inputs. The third
value specifies the index of the function in the function set (shown
in Table 1) to be applied to the values presented at the inputs. The
final integer in the chromosome specifies the node that provides
the value to be presented at the output node O/P 0. A CGP
network comprising three columns of 10 rows as shown in Fig. 4
is more representative of that typically used.

A number of these chromosomes form the individuals of a
population, which are initialised with random values. Each
chromosome is then used to configure the network and
subsequently calculate a result for the problem under
consideration. The result presented at the output of this network is
ight-hand side corner of each node, the node function is specified in the centre
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Fig. 3 Example chromosome for configuration of the CGP network

Table 1 Example function set

Function reference Function

1 +
2 −
3 *
4 /
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compared with the desired result, and a fitness score derived, which
is then associated with the respective individual’s chromosome.
After all the individuals in the population have been evaluated in
this manner, the fittest is retained and the remaining discarded.
The subsequent generation of individuals is then constructed from
this fittest individual and its clones, which are subjected to a
variation function, typically a conventional mutation operation
according to a predefined probability. Mutation is simply achieved
by randomly altering the integer values of the chromosome within
a valid range.
Fig. 5 Use of sensors for diagnosis, monitoring and differentiation of PD

a Finger tapping task using EM tracking sensors
b Unconstrained movement measurement using accelerometer/gyroscopes
c Reach and grasp task using computer data gloves

Fig. 4 Typical CGP network configuration with 3 columns and 10 rows of
nodes

IET Syst. Biol., pp. 1–8
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The training of the CGP networks is continued until either perfect
fitness is achieved (according to the predetermined fitness function)
or other criteria is met, such as a maximum number of generations.
The fittest network can then be evaluated by applying conventional
testing and validation stages with data not used in the training stage.

There are two ways in which CGP provides an advantage over
other processing techniques. First of all, for highly non-linear,
complex data sets such as that found in measurement of human
movement disorders, CGP has been shown to evolve high
performance classifiers. Second, unlike many processing
techniques, once a high performing classifier has been evolved, a
mathematical expression defining this classifier can be easily
obtained by decoding the resulting CGP network. This can provide
valuable insight into which data obtained from the physical
measurements of movement have been used in the evolved
classifier and are therefore an important distinguishing feature of
the condition [49].
4.1 Application of EAs to measure movement disorders
in humans

CGP EAs have been used by our group to process data obtained from
a range of sensors to diagnose and monitor PD in humans:

Diagnosis of PD (Fig. 5a): We attached EM tracking sensors to
the finger and thumb of 49 PD patients and 41 age-matched
healthy controls whilst undertaking a finger tapping task for 30 s –
a common conventional clinical evaluation. The majority (80%) of
the patients had only clinically mild bradykinesia. The movement
data collected by the EM sensors was analysed by custom-written
EAs and compared with clinical diagnosis using receiver operating
characteristic (ROC) curves. The best classifiers had an area under
the ROC curve (AUC) of 0.9 corresponding to predictive
accuracies of 80–90% depending on choice of threshold. This
suggests that automated tests of bradykinesia could have a role to
play in providing objective information to support a tentative
clinical diagnosis of PD [15].

Recognition and monitoring of levodopa-induced dyskinesia
(Fig. 5b): Matchbox-sized accelerometer/gyroscope devices were
worn on the limbs, head and trunk of PD patients for periods of
up to 24 hours and movement data was analysed using EAs.
Provisional results show that the device has excellent accuracy
(AUC 0.9) for monitoring severe and moderate degrees of
dyskinesia. Providing this kind of objective clinical information to
clinicians would enable them to make more informed decisions
regarding administration of medication and also could be used to
evaluate new drugs for its treatment [50].

A unified test for neurodegenerative disorders (Fig. 5c): Data
gloves and motion tracking sensors are used to assess PD patients
5
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and healthy controls as they reach and grasp a cylinder under several
different conditions, for example using an auditory cue, a visual cue
and with eyes closed. Data analysis is currently underway. EAs will
be applied to the movement data to classify healthy controls and PD
patients as well as further classifying PD patients into those with and
without cognitive impairment. Previous research using standard
statistical analysis has shown differences in reaching and grasping
between patients with PD and other neurodegenerative conditions
such as Alzheimer’s disease and corticobasal ganglionic
degeneration [51, 52].

In all of these cases the processing of data resulting from the
patient measurements is treated in the same way. The data,
obtained from any of the sensors considered above, comprises a
stream of co-ordinates that describe the motion of the patient,
whether it is in response to a specific task (such as finger tapping,
drawing or reach and grasp task) or resulting from unconstrained
movement, as in the case of the wearable accelerometer/gyroscope
devices. The data is preprocessed and then presented to each of
the individual CGP networks in the population through a moving
windowing operation that presents 10 data points at a time until
the entire data stream has been presented.
4.2 Application of EAs to measure movement disorders
in animal models

Once a genetically altered animal is generated, it is important to
determine how good a model it is for the human disease being
studied. For animal models of PD, there are methods to identify
and measure numbers of dopamine producing neurons as well as
physiological methods to assess the function of these neurons [53,
54]. An impaired diving behaviour has been noted in zebrafish
lacking dopamine [55]. However, it would be an over-interpretation
to align this aspect of fish behaviour to symptoms of PD patients.
A hallmark of humans with PD is bradykinesia, which can be
measured in humans and quantified using EAs as described above.

In zebrafish models, a high frame rate video of fish swimming has
been analysed using computer vision techniques to generate a
minimal set of data characterising how the body of the fish flexes,
as shown in Fig. 6. We are currently developing methods to
measure movement of the fish, in specially designed tanks,
to enable EAs to be evolved. Adapting the protocols used to
Fig. 6 Automated tracking of the body flexion of the zebra fish

a Is the source video of the zebra fish
b Result of processing, with coloured knots representing segments of the body
c Plot of the movement of the fish represented by these knots with respect to the direction of
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diagnose PD in humans for use in genetic models will provide an
assessment of the effects of disrupting a specific PD gene. A
zebrafish model of PD has the potential for high throughput in
vivo drug screening that is not economically viable using other
vertebrate models.

In Drosophila models, we have analysed the videos of the PER by
importing them into MATLAB, defining the frames in which the
proboscis is extended, and then tracking its movement. This has
allowed us to adopt the same strategy for analysis of movement in
the fly as in the human. The results presented in Fig. 7 show the
ability of an EA to train classifiers that discriminate (a) wild-type
controls (46 flies) from TH > hLRRK2 (47 flies) with an AUC of
0.78, and (b) TH > LRRK2-G2019S mutation (45 flies) from TH >
hLRRK2 (47 flies) with an AUC of 0.78 according to this captured
movement.

In conclusion, the fly model of PD recapitulates PD in a very
simple sensory reflex, where activity of a single dopaminergic
neuron is manipulated by a PD-related mutation to produce both
akinesia and hypokinesia. It is amenable to genetic dissection, to
identify the impact of G2019S expression on functioning neuronal
components, and to analysis by the same EAs as used in patients.
The results presented here demonstrate an exciting opportunity to
relate the change in kinase activity in G2019S to subsequent
cellular, neuronal and movement disorders. This offers the
powerful potential to test the impact of existing drugs (e.g.
L-DOPA) and of first-in-vivo testing of novel tool compounds
(e.g. BMPPB-32 [53]) in a quantifiable manner.
5 Summary and future work

This paper has reviewed how EAs can be successfully applied to the
assessment of movements in humans to classify PD patients from
healthy controls and classify severity of dyskinesia in PD patients.
We have presented new results that demonstrate the ability of EAs
to classify wild-type Drosophila from those with PD related
genetic mutations. The ability to use CGP EAs in both human and
animal models of PD represents an exciting development, as
decoding of the CGP network will allow distinguishing movement
features to be analysed and compared across species. This has
great potential for increasing understanding of PD as well as the
effects of new and existing drug therapies.
travel
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Fig. 7 ROC curves demonstrating the evolutionary algorithm to correctly classify

a Wild-type (CS x w1118 outcross) and TH > hLRRK2 with an AUC of 0.78
b TH > LRRK2-G2019S mutation and wild-type TH > hLRRK2 with an AUC of 0.78 (flies aged 8 days)

This paper is a postprint of a paper submitted to and accepted for publication in IET Systems Biology and is subject to Institution of 
Engineering and Technology Copyright. The copy of record is available at IET Digital Library.
Work to apply EAs to zebrafish models of PD and to use EAs to
classify degrees of cognitive impairment in humans with PD by
analysing movement data is under way. Ultimately we hope that
the application of EAs to movement data in animals and humans
will provide a unifying model for motor dysfunction in PD.
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