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Abstract—Slowness of movement, known as bradykinesia,
in an important early symptom of Parkinson’s disease. This
symptom is currently assessed subjectively by clinical experts.
However, expert assessment has been shown to be subject
to inter-rater variability. We propose a low-cost, contactless
system using smartphone videos to automatically determine
the presence of bradykinesia. Using 70 videos recorded in a
pilot study, we predict the presence of bradykinesia with an
estimated test accuracy of 0.79 and the presence of Parkinson’s
disease diagnosis with estimated test accuracy 0.63. Even on
a small set of pilot data this accuracy is comparable to that
recorded by blinded human experts.
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I. INTRODUCTION

Parkinson’s disease is a neurodegenerative disorder that

affects approximately 1 in 500 adults in the UK [1]. The

diagnosis is a clinical one, based on the clinician detecting

the presence of a slowness of movement termed bradyki-

nesia, together with at least one of rigidity, rest tremor or

postural instability (United Kingdom Parkinson’s Disease

Society Brain Bank Criteria) [2]–[4].

The most common method to detect bradykinesia involves

a specially trained clinician making a visual assessment of

the patient tapping finger and thumb together. In this test,

a patient is asked to tap their forefinger against their thumb

for 10 seconds (as wide and quick as possible). The clinician

observes for impairment of speed, amplitude or rhythm, and

there is often also a progressive ‘decrement’ seen over the

duration of the test [4], [5].

However, this visual clinical judgment is inherently sub-

jective, and there is no objective measure in routine clinical

use. Given both the imprecise definition of the term, and the

difficulty for human observers to quantify small differences

in movement, it is little surprise that inter-rater assessment

of bradykinesia is moderate at best [4], [5]. Current evidence

suggests that human observers prioritize changes in move-

ment amplitude over changes in the frequency or rhythm [4].

Given the importance of bradykinesia to diagnose and

monitor Parkinson’s, and the relatively small group of neu-

rologists trained to assess it, an automatic and objective

method of determining the level of bradykinesia has the po-

tential to improve early diagnosis and to standardize follow-

up assessment. Robust implementation of such a system

might also allow home-monitoring of disease progression

and richer longitudinal information to inform patient care.

Other approaches have previously been suggested for ob-

jective bradykinesia assessment [6]–[8]. However, all prior

methods either require sensors that may not be readily avail-

able, or they require the patient to interact with a specific

computer program or smartphone app. To our knowledge,

there is only one previous report that involves standard video

to objectively measure bradykinesia, but the participants all

had advanced Parkinson’s disease, and the method required

the face to be included in the video [9]. Here we propose a

solution that uses the ubiquitous smartphone video camera to

capture the relevant data during standard clinical assessment.

Our primary aim is to provide proof-of-concept that

one can automate the assessment of bradykinesia, negating

the impact of inter-rater variability and providing easily

accessible clinical decision support. We also investigate the

potential for diagnosis of Parkinson’s disease itself. We

describe how the video signal is processed and how pertinent

features may be extracted to predict both bradykinesia and

the presence of a Parkinson’s disease diagnosis. Finally, we

present initial results from a case-control pilot study.

II. EXISTING WORK

In general, three main approaches have been used to

objectively record bradykinesia on finger tapping: 1) touch

plate or computer key, 2) gyroscope and/or accelerometer,

and 3) optical tracking of infrared markers.

These methods are compared to expert classification on

one of two clinically validated scoring systems. The Uni-

versal Parkinson’s Disease Rating Scale (UPDRS) gives an

overall score from 0 (no bradykinesia) to 4 (severe bradyki-

nesia) based on the first 10 finger taps [10]. The Modified

Bradykinesia Rating Scale (MBRS) gives a separate score
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from 0 (no impairment) to 4 (severe impairment) for each

of the three aspects of bradykinesia – speed, amplitude, and

rhythm [4] – based upon ten seconds of tapping.

For 33 Parkinson’s disease (PD) patients, Giovanonni et

al. found the number of keyboard finger taps in 60 seconds

was significantly lower than controls (107 vs. 182), and

correlated with clinician UPDRS rating, r = 0.69 [11].

Papapetropoulos et al. reported a modest but significant

improvement in the maximum frequency of tapping a touch

recording plate among 7 patients after deep brain stimulation

to treat PD (4Hz before, 4.6Hz after) [12]. More recently,

finger tapping within two rectangles on a smartphone screen

showed a correlation of r = 0.75 with clinical UPDRS rat-

ing, with some features predictive of PD diagnosis, e.g. area

under the curve (AUC) of 0.92 for distance of taps [13].

Gyroscope and/or accelerometer devices attached to fore-

finger and thumb provide a richer signal and can records

the standard clinical finger-thumb tap examination. An ac-

celerometer study showed that patients had higher beat decay

of the auto-mutual information value (a signal predictability

measure) vs. controls, giving a diagnostic accuracy of around

80% [14]. In 50 PD patients, Heldman et al. showed

correlations between gyroscope recording and clinical rating

for each of the three distinct components of bradykinesia

according to the MBRS [4]. Angular velocity correlated with

speed (-0.79), the excursion angle correlated with amplitude

(-0.81), and the coefficient of variation correlated with

rhythm (0.65) [4]. Furthermore, among 18 patients at each

of 10 different deep brain stimulation amplitudes, gyroscope

measurements showed higher test-retest reliability calculated

as intraclass correlation and greater sensitivity calculated as

minimal detectable change [15].

Using 3D recording of infrared markers on finger and

thumb, in 22 patients and 22 controls, amplitude decrement

and maximum opening velocity best differentiated between

patients and controls (AUC = 0.87 and 0.81). [16]. Another

study reported significant correlation between infrared mea-

sures of speed and rhythm and clinician rating according

to UPDRS, although these correlation were not very strong

(-0.37 and 0.31) [17].

To our knowledge, only one previous study has used

computer analysis of simple video to detect bradykinesia on

finger tapping [9]. This method tracked index finger motion

and estimated distance by using face height to quantify hand

length (by universal face:hand size ratios, the ‘proportions

of man’). A feature of tapping rhythm, ‘cross-correlation

between the normalized peaks’, showed a strong Guttman

correlation with UPDRS (-0.8), and support vector machine

classification distinguished between PD patients and con-

trols with an accuracy of 95%. However, only 13 patients

participated, and all had advanced Parkinson’s (a disease

stage at which diagnosis is rarely an issue). Furthermore, a

requirement to video the patient’s face could be considered

intrusive, limiting utility in practice.

III. METHOD

A. Data Collection (Video Recording and Clinician Rating)

The study was approved by the UK Health Research

Authority (IRAS no. 224848). Patients with idiopathic PD,

diagnosed by a consultant neurologist at Leeds Teaching

Hospitals NHS Trust, were invited to attend a research clinic

appointment. Control participants were invited from the

partners and companions of patients, or from hospital staff.

Video recordings were made of each hand in turn tapping

forefinger and thumb ‘as quickly and as big as possible’ for

15 seconds. This convenience sample comprised 40 patient

hands and 30 controls hands (20 patient participants and 15

control participants), collected in 2017 and 2018.

The recordings were made using an integrated smartphone

camera (iPhone SE), set to 60 frames per second, 1920x1080

pixels, and placed on a tripod, with only ambient lighting.

The participant was asked to rest their elbow on a chair

arm during the finger tapping and only the hand/forearm

was filmed (no identifiable patient details were filmed). The

distance from camera to hand was not tightly defined; in

practice, the camera was positioned at approximately 1m

from the participant. The lateral (thumb) surface of the hand

faced the camera.

The degree of bradykinesia in each video was indepen-

dently rated by two consultant neurologists with a special

interest in movement on the UPDRS scale [17]. The raters

were blinded to patient/control group. Where there was

disagreement in rater scores, the higher score was used.

B. Data Analysis

1) Data Processing: A schematic of the data processing

framework is presented in Figure 1. Complete details of

the process will be described in future work. An abridged

description now follows.

Initially, the video frames were segmented to pixels

corresponding to a participant’s hand. The hand regions

of interest were first detected using a convolutional neural

network, originally proposed by Bambach et al. [18]. Our

implementation was trained using manual annotation of 500

randomly selected frames from our dataset. A secondary

pixel-level segmentation, the grabcut method [19], was then

used to refine the regions by removing erroneous background

pixels.

The segmented frames were then converted into an optical

flow field [20]. In such a field, each position corresponds to

the vector pixel movement of a point object between two

sequential frames. The magnitude of the vector thus rep-

resents the instantaneous speed of a point (in pixels/frame).

We sum the magnitude at each point in the region of interest

to obtain a metric of overall hand movement.

To convert optical flow magnitude into true hand velocity,

caused by camera distance or hand size (rather than actual

movement), we scale the magnitude by the number of pixels



Figure 1. Illustration of the data processing in which raw video is converted to an anonymous 1D time series. Raw video is first segmented using a
convolutional neural network. The segmentation is refined using the grabcut method. Frame-by-frame movement of the hand is extracted using optical
flow. The optical flow field is then reduced so that the magnitude of movement between two frames is summarized by a single value.
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Figure 2. Examples of the optical flow magnitude time series. Top: no bradykinesia (UPDRS = 0). Bottom: severe bradykinesia (UPDRS = 4).

in the hand region of interest, so that our metric Mt is:

Mt =

∑H

j

∑W

i bij

√
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j

∑W

i bij
, (1)

where H and W are the height and width of the optical flow

field, u and v are the horizontal and vertical components of

the flow, and b is the pixel mask obtained from the image

segmentation. By evaluating Mt over a sequence of video

frames we produce a 1D signal over time. Examples of the

signal are shown in Figure 2.

2) Feature Selection: Candidate features were derived

from the 1D signal via clinical knowledge and visual inspec-

tion. In particular, we derived a set of features that described

the frequency, amplitude, and tap-to-tap variability, to reflect

the UPDRS assessment criteria. The features selected were

as follows.

Frequency: Tapping frequency was estimated as the fre-

quency corresponding to the maximal amplitude peak in the

fast Fourier transform (FFT) spectrum. This assumes that the

finger tapping motion corresponds to the greatest movement

(and thus energy) between frames and that other movements,

such as finger tremor, have smaller magnitude.

Amplitude: Energy spectral density was calculated as the

squared integral of the FFT spectrum. In addition, we

assumed that bradykinesia movement is distinctive in some

frequency bands. Therefore the energy spectral density is

separated into six non-overlapping frequency bands ranging

from 0Hz to 18.36Hz with bandwidth interval 3.06Hz.

Variability: Two variability features were derived using the

peaks of the optical flow waveform. Peaks were calculated

via the MATLAB function findpeaks with zero minimum

peak prominence. Peaks were then classified as maxima or

minima by fitting a 1D Gaussian mixture model with two



clusters to the peak amplitude values. We then defined:

Jitter: We hypothesize that there are differences between the

hand closing and hand opening motions. We further note

that there is an observable difference in higher frequency

movement between maxima and minima. For instance, the

troughs in the signal of the patient in Figure 2 appear subject

to jitter that is not as visible at the peaks. To quantify the

jitter we include the ratio of number of maxima to number

of minima over the entire time series as a predictor.

Peak-to-peak variability: was calculated as the standard

deviation of the time between maxima peaks. This feature

models variation in tapping frequency across the time series

and may be considered analogous to the standard deviation

of RR intervals (SDRR) for ECG signals [21].

C. Classification

We performed binary classification using Naı̈ve Bayes

(NB), logistic regression (LR), and both linear and RBF-

based Support Vector Machines (SVM-L and SVM-R, re-

spectively) [22] to predict two outcomes: 1) a UPDRS score

> 1, and 2) a diagnosis of PD.

Given the relatively small number of samples in the

dataset we reduced the feature space into two dimensions

using principle component analysis. The NB model was

chosen as a simple baseline classifier providing a sensible

lower bound for performance based upon small datasets.

LR provides a linear separation of the data points and this

simplicity may lead to lower generalization error. We incor-

porated ridge (L2) regularization with strength determined

via a grid search to minimize 10-fold cross-validation loss.

The SVM-L model optimizes a different cost function

that the LR model and therefore gives a different linear

separation of the classes. Meanwhile, the SVM-R model

has the ability to model nonlinear decision boundaries. The

slack and (for SVM-R) kernel scaling hyper-parameters were

again estimated using a grid search to minimize 10-fold

cross-validation loss.

We report the accuracy, sensitivity, specificity, and AUC

score for each model. Due to the relatively small size of

our pilot data we estimate the out-of-sample test accuracy

of each model by reporting the mean accuracy of leave-one-

out cross-validation (LOO-CV), with the hyper-parameters

determined via the procedure described above. Analyses

were performed using MATLAB 2017b and the scikit-learn

and Tensorflow packages for Python 3 [23], [24].

IV. RESULTS

A total of 70 videos were collected from 35 participants

(left and right hands), with 40 videos corresponding to the

hands of participants with diagnosed Parkinson’s disease.

UPDRS scores from 0–4 were assigned by two expert

clinicians and then categorized into our binary outcome:

UPDRS ≤ 1 and UPDRS > 1. Their assessment matched in

73% of cases (κ = 0.46). The largest of these two scores

Table I
RESULTS FOR EACH MODEL WHEN PREDICTING WHETHER UPDRS > 1.

THE TEST ACCURACY IS ESTIMATED USING LOO-CV.

Method Accuracy Sensitivity Specificity AUC Test Acc.

NB 0.67 0.76 0.53 0.68 0.64
LR 0.79 0.82 0.75 0.79 0.79

SVM-L 0.79 0.86 0.69 0.79 0.76
SVM-R 0.79 0.86 0.69 0.79 0.76
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Figure 3. Decision boundaries for prediction of UPDRS > 1. The
unbroken line is for NB, dashed for SVM-R, dash-dotted for SVM-L, and
dotted for LR.

was selected for training of the models. In Figure 2 we show

an example of UPDRS = 0 and UPDRS = 4 for comparison.

The performance of each model for the prediction of

UPDRS category is shown in Table I. We see that LR and the

two SVMs obtain the best accuracy and AUC scores of 0.79

on the training data, though the SVMs have better sensitivity

with LR obtaining better specificity. NB is not competitive

for this prediction task. The test accuracy (estimated using

LOO-CV) drops to 0.76 for both SVM models, whilst LR

retains its accuracy of 0.79.

In Figure 3 we show each time series plotted in feature-

space after the dimensionality reduction, colored according

to category. We also show the decision boundaries of each

method: an unbroken line for NB, dashed for SVM-R, dash-

dotted for SVM-L, and dotted for LR.

Our second task is the prediction of Parkinson’s disease

itself based upon these features. The performance of each

model for this second task is shown in Table II. SVM-L

obtained the best accuracy of 0.69 and the best specificity

of 0.75. However, the simple NB model obtained the best

sensitivity of 0.81 and AUC score of 0.69. Both LR and

SVM-R were not competitive for this task.

When estimating the test error, the simplicity of the NB



Table II
RESULTS FOR EACH MODEL WHEN PREDICTING PARKINSON’S DISEASE

DIAGNOSIS. THE TEST ACCURACY IS ESTIMATED USING LOO-CV.

Method Accuracy Sensitivity Specificity AUC Test Acc.

NB 0.67 0.81 0.55 0.69 0.63

LR 0.64 0.67 0.75 0.63 0.59
SVM-L 0.69 0.71 0.75 0.68 0.57
SVM-R 0.66 0.75 0.60 0.67 0.57
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Control
Patient

Figure 4. Decision boundaries for prediction of Parkinson’s disease
diagnosis. The unbroken line is for NB, dashed for SVM-R, dash-dotted
for SVM-L, and dotted for LR.

model allowed it to retain an accuracy of 0.63 whilst SVM-

L dropped to 0.57. It appears that, in this relatively small

dataset, SVM-L is highly reliant on a few key data points.

A plot of the time series in feature-space, colored by

category, and the decision boundary of each method is

displayed in Figure 4.

V. DISCUSSION

In a pilot sample of 70 finger-tapping test videos, we

showed reasonable predictive performance for predicting

moderate to severe bradykinesia. The estimated test accuracy

of 0.79 (using LR) is promising in light of the level of

agreement between expert clinical raters (0.73). We also

note that disagreement between the automated method and

clinical experts may be caused when either i) the clinician is

correct and the automated test is wrong, or ii) the clinician

is incorrect and the automated test is right. Given that

prior literature casts doubt on the ability of human experts

to accurately evaluate subtle traits [4], [25], ii) is highly

feasible; such that the reported accuracy may underestimate

how well we truly classify bradykinesia.

The method was less successful at predicting the presence

of Parkinson’s disease diagnosis: NB obtained an estimated

test accuracy of 0.63. This poorer performance is to be

expected, given that bradykinesia is only one symptom of a

more comprehensive clinical diagnosis criteria.

The approach used here has potential to provide widely

available and low-cost bradykinesia detection; without the

requirement for new hardware or for patients to directly

interact with smartphone apps or computer programs. This is

a fundamental difference from previous published methods

to detect or assess bradykinesia [4], [8]. An automated

method broadens access to the measurement of bradykinesia

(currently the preserve of a small group of clinicians, prin-

cipally neurologists). For example, allowing family doctors

and medical nurse practitioners to screen for and monitor the

phenomenon has potential resource benefits. Furthermore,

the use of ubiquitous technology means that the approach

may be suitable in a home setting to monitor progression of

Parkinson’s disease. In addition, it might also be useful for

monitoring other conditions in which there are changes in

movement over time such as rheumatoid arthritis, in which

common symptoms include decreased range of motion and

joint stiffness [26], [27].

Whilst initial results appear promising, our small sample

size means that classification using LR, SVMs, and NB

produced conservative decision boundaries. A large sample

size would allow us to determine whether there was any true

local structure in the feature space.

A larger sample size would also allow us to improve the

usefulness of the system by estimating the UPDRS score

directly, rather than the binary categorization undertaken

here. A larger validation study is therefore necessary and

has been initiated by the study team.

Furthermore, the approach taken here is likely sub-optimal

in two respects. First, spatial and angular information is

discarded at each frame. This has the advantage of reducing

the dimensionality of the signal so that real-time processing,

even on modest hardware, is practicable. Second, the hand-

selection of candidate features was entirely subjective and

may have missed important characteristics in the time series.

Additional data would allow more sophisticated approaches

to automatically learn pertinent features (c.f. [28]).

VI. CONCLUSION AND FUTURE WORK

We have described and demonstrated an automated

method to classify the presence of bradykinesia via smart-

phone video signals. In our small pilot study we have shown

good agreement with expert clinicians. Further improve-

ments may be possible via more sophisticated analyses, but

this required further training data. A larger validation study

of this technology is currently under development.
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