52 research outputs found

    Robust Η∞Control for a Class of Discrete Time-Delay Stochastic Systems with Randomly Occurring Nonlinearities

    Get PDF
    Copyright © 2014 Yamin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In this paper, we consider the robust Η∞ control problem for a class of discrete time-delay stochastic systems with randomly occurring nonlinearities. The parameter uncertainties enter all the system matrices; the stochastic disturbances are both state and control dependent, and the randomly occurring nonlinearities obey the sector boundedness conditions. The purpose of the problem addressed is to design a state feedback controller such that, for all admissible uncertainties, nonlinearities, and time delays, the closed-loop system is robustly asymptotically stable in the mean square, and a prescribed Η∞ disturbance rejection attenuation level is also guaranteed. By using the Lyapunov stability theory and stochastic analysis tools, a linear matrix inequality (LMI) approach is developed to derive sufficient conditions ensuring the existence of the desired controllers, where the conditions are dependent on the lower and upper bounds of the time-varying delays. The explicit parameterization of the desired controller gains is also given. Finally, a numerical example is exploited to show the usefulness of the results obtained.This work was supported in part by the National Natural Science Foundation of China under Grants 61374010, 61074129, and 61175111, the Natural Science Foundation of Jiangsu Province of China under Grant BK2012682, the Qing Lan Project of Jiangsu Province (2010), the 333 Project of Jiangsu Province (2011), and the Six Talents Peak Project of Jiangsu Province (2012)

    Existence of random attractors for a class of second order lattice dynamical systems with Brownian motions

    Get PDF
    Copyright © 2014 Yamin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.For abstract, see attached file.The National Natural Science Foundation of China under Grant nos. 61374010, 61074129, and 61175111, the Natural Science Foundation of Jiangsu Province of China under Grant BK2012682, the Qing Lan Project of Jiangsu Province (2010), the 333 Project of Jiangsu Province (2011), and the Six Talents Peak Project of Jiangsu Province (DZXX-047)

    Reliable H ∞ filtering for stochastic spatial–temporal systems with sensor saturations and failures

    Get PDF
    This study is concerned with the reliable H∞ filtering problem for a class of stochastic spatial–temporal systems with sensor saturations and failures. Different from the continuous spatial–temporal systems, the dynamic behaviour of the system under consideration evolves in a discrete rectangular region. The aim of this study is to estimate the system states through the measurements received from a set of sensors located at some specified points. In order to cater for more realistic signal transmission process, the phenomena of sensor saturations and sensor failures are taken into account. By using the vector reorganisation approach, the spatial–temporal system is first transformed into an equivalent ordinary differential dynamic system. Then, a filter is constructed and a sufficient condition is obtained under which the filtering error dynamics is asymptotically stable in probability and the H∞ performance requirement is met. On the basis of the analysis results, the desired reliable H∞ filter is designed. Finally, an illustrative example is given to show the effectiveness of the proposed filtering scheme.Deanship of Scientific Research (DSR) at King Abdulaziz University in Saudi Arabia under Grant 16-135-35-HiCi, the National Natural Science Foundation of China under Grants 61329301, 61134009 and 61473076, the Shanghai Rising-Star Program of China under Grant 13QA1400100, the Shu Guang project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant 13SG34, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the Fundamental Research Funds for the Central Universities, the DHU Distinguished Young Professor Program, and the Alexander von Humboldt Foundation of German

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    An integrated approach to global synchronization and state estimation for nonlinear singularly perturbed complex networks

    Get PDF
    This paper aims to establish a unified framework to handle both the exponential synchronization and state estimation problems for a class of nonlinear singularly perturbed complex networks (SPCNs). Each node in the SPCN comprises both 'slow' and 'fast' dynamics that reflects the singular perturbation behavior. General sector-like nonlinear function is employed to describe the nonlinearities existing in the network. All nodes in the SPCN have the same structures and properties. By utilizing a novel Lyapunov functional and the Kronecker product, it is shown that the addressed SPCN is synchronized if certain matrix inequalities are feasible. The state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that dynamics (both slow and fast) of the estimation error is guaranteed to be globally asymptotically stable. Again, a matrix inequality approach is developed for the state estimation problem. Two numerical examples are presented to verify the effectiveness and merits of the proposed synchronization scheme and state estimation formulation. It is worth mentioning that our main results are still valid even if the slow subsystems within the network are unstable

    Nonfragile H∞Fuzzy filtering with randomly occurring gain variations and channel fadings

    Get PDF
    This paper is concerned with the nonfragile filtering problem for a class of discrete-Time Takagi-Sugeno (T-S) fuzzy systems with both randomly occurring gain variations (ROGVs) and channel fadings.The phenomenon of the ROGVs is introduced into the system model so as to account for the parameter fluctuations occurring during the filter implementation. Two sequences of random variables obeying the Bernoulli distribution are employed to describe the phenomenon of the ROGVs bounded by prescribed norms. In addition, the Rice fading model is utilized to describe the phenomena of channel fadings, where the occurrence probabilities of the random channel coefficients are allowed to time varying. Through stochastic analysis and Lyapunov functional approach, sufficient conditions are established under which the filtering error dynamics is exponentially mean-square stable with a prespecified ∞ performance. The set of the desired nonfragile ∞ filters is characterized by solving a convex optimization problem via the semidefinite programming method. An illustrative example is given to show the usefulness and effectiveness of the proposed design method in this paper.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127 and 61422301, the Hujiang Foundation of China under Grant C14002, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects

    Get PDF
    In this paper, some recent advances on the estimation, filtering and fusion for networked systems are reviewed. Firstly, the network-induced phenomena under consideration are briefly recalled including missing/fading measurements, signal quantization, sensor saturations, communication delays, and randomly occurring incomplete information. Secondly, the developments of the estimation, filtering and fusion for networked systems from four aspects (linear networked systems, nonlinear networked systems, complex networks and sensor networks) are reviewed comprehensively. Subsequently, some recent results on the estimation, filtering and fusion for systems with the network-induced phenomena are reviewed in great detail. In particular, some latest results on the multi-objective filtering problems for time-varying nonlinear networked systems are summarized. Finally, conclusions are given and several possible research directions concerning the estimation, filtering, and fusion for networked systems are highlighted

    H∞ state estimation for discrete-time memristive recurrent neural networks with stochastic time-delays

    Get PDF
    This paper deals with the robust (Formula presented.) state estimation problem for a class of memristive recurrent neural networks with stochastic time-delays. The stochastic time-delays under consideration are governed by a Bernoulli-distributed stochastic sequence. The purpose of the addressed problem is to design the robust state estimator such that the dynamics of the estimation error is exponentially stable in the mean square, and the prescribed (Formula presented.) performance constraint is met. By utilizing the difference inclusion theory and choosing a proper Lyapunov–Krasovskii functional, the existence condition of the desired estimator is derived. Based on it, the explicit expression of the estimator gain is given in terms of the solution to a linear matrix inequality. Finally, a numerical example is employed to demonstrate the effectiveness and applicability of the proposed estimation approach.This work was supported in part by the National Natural Science Foundation of China [grant number 61329301], [grant number 61134009], [grant number 61473076], [grant number 61503001]; the Shu Guang project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation [grant number 13SG34]; the Natural Science Foundation of Universities in Anhui Province [grant number KJ2015A088], [grant number TSKJ2015B17]; the Fundamental Research Funds for the Central Universities, the DHU Distinguished Young Professor Program, and the Alexander von Humboldt Foundation of Germany
    • …
    corecore