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An Integrated Approach to Global Synchronization
and State Estimation for Nonlinear Singularly

Perturbed Complex Networks
Chenxiao Cai, Zidong Wang, Jing Xu, Xiaohui Liu and Fuad E. Alsaadi

Abstract—This paper aims to establish a unified framework
to handle both the exponential synchronization and state esti-
mation problems for a class of nonlinear singularly perturbed
complex networks (SPCNs). Each node in the SPCN comprises
both “slow” and “fast” dynamics that reflects the singular
perturbation behavior. General sector-like nonlinear function is
employed to describe the nonlinearities existing in the network.
All nodes in the SPCN have the same structures and properties.
By utilizing a novel Lyapunov functional and the Kronecker
product, it is shown that the addressed SPCN is synchronized
if certain matrix inequalities are feasible. The state estimation
problem is then studied for the same complex network, where
the purpose is to design a state estimator to estimate the network
states through available output measurements such that dynamics
(both “slow” and “fast”) of the estimation error is guarante ed
to be globally asymptotically stable. Again, a matrix inequality
approach is developed for the state estimation problem. Two
numerical examples are presented to verify the effectiveness
and merits of the proposed synchronization scheme and state
estimation formulation. It is worth mentioning that our mai n
results are still valid even if the “slow” subsystems within the
network are unstable.

Index Terms—Complex network, exponential synchronization,
Kronecker product, singularly perturbed system, state estimation

I. I NTRODUCTION

The past few decades have witnessed a surge of research
outputs on the dynamics analysis of complex networks due
primarily to their pervasive applications in a variety of physical
systems and engineering plants [8], [10], [12], [18], [19],[30],
[40] such as the internet, neural networks and genetic net-
works, etc. An increasing research interest has been devoted to
the synchronization and stabilization problems for dynamical
complex networks with each node representing a dynamical
system [12], [32], [38]. The synchronization phenomenon has
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proven to be of major concern to excite the collective behavior
of complex dynamical networks [24], [25], and a rich body of
literature has been available so far. For example, a sufficient
condition for global synchronization and stability analysis has
been derived in [19], [38], [39] based on a reference state
and Lyapunov stability theory. Using the Lyapunov func-
tional method and Kronecker product technique, the globally
exponential synchronization and synchronizability have been
studied in [27] for general dynamical networks. On the other
hand, it is often the case that the complex network consists
of a large number of nodes and only partial information
about the network nodes is measureable through the network
outputs. In such a case, the state estimation problem for
complex networks based on available measurements becomes
imperatively important and has stirred quite a lot of research
attention, see [9], [25], [32], [33], [36] and the references
therein. However, it is worth noting that, in almost all reported
results, the node system in a complex network has been
implicitly assumed to beregular, that is, the dynamics of the
states of each node system evolves in the same time scale.

On the other hand, in practice, many dynamical systems
possess two-time-scale characteristics, namely, an interaction
of ‘fast’ and ‘slow’ dynamics such as aircraft and racket
systems [34], electric power systems [1], [29] and biological
systems [37]. Such kind of systems is governed by both fast
and slow dynamics, and customarily referred to as the singu-
larly perturbed systems (SPSs). In [34], a singularly perturbed
structure has been assumed by artificial insertion of a small
unit-valued parameter with highest derivative or some of the
state variables of the nonlinear dynamical equations, where the
four different structures of identifying the singular perturbation
parameter have been presented in terms of the parameters
of the nonlinear dynamical system. In [43], a differential
geometric control approach has been provided to deal with
the dynamics of the nodes of a power network modeled from
the singular perturbation of the power flow equations. From
a theoretical viewpoint, the singular perturbation provides us
with a powerful tool to reduce the system order and separate
the time scales of singularly perturbed systems [17], [23],but it
also gives rise to significant difficulties in analyzing the system
behaviors because of the small parasitic parameters multiplied
by the time derivatives of the part of the system states.

In the context of complex networks, in the past decade, a
variety of complex network models have been proposed and
then thoroughly investigated. Examples include, but are not
limited to, stochastic complex networks [20], [36], complex
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networks with imperfect measurements [33], [35], uncertain
complex networks [21], [31] as well as complex networks with
various kinds of transmission delays [9], [15]. It is noticeable
that, for some complex networks such as power networks
and neural networks, the node systems are often subject to
singular perturbations. For example, in [43], the special singu-
larly perturbed property of the classical distribution networks
has been fully discussed that has led to a precise control
with help from the singular perturbation approach, and the
slow and the fast two-time-scale characteristics have been
illustrated for a DC motor and a synchronous generator [7].
Furthermore, the neural network based control and observer
design problems have been investigated in [22] for a class
of singularly perturbed nonlinear systems with guaranteed
H∞ control performance. In [4], the model predictive control
problem has been handled for nonlinear singularly perturbed
systems with application on a large-scale nonlinear reactor-
separator process network which exhibits two-time-scale be-
havior. Unfortunately, a literature search reveals that little
work has been devoted towards the dynamics analysis issue
of the singularly perturbed complex networks especially when
the singular perturbation phenomenon occurs on each node
system. It is, therefore, the main focus of this paper to shorten
such a gap by initiating a major study on the exponential
synchronization and state estimation problems for a class of
nonlinear singularly perturbed complex networks (SPCNs).

In this paper, we investigate the exponential synchronization
and state estimation problems for a class of nonlinear SPCNS
with each node subjecting to both ‘slow’ and ‘fast’ dynamics.
All nodes in the SPCN are of the same structures and proper-
ties. Rather than the commonly used Lipschitz-type function,
a more general sector-like nonlinear function is employed
to describe the nonlinearities existing in the network. By
utilizing a novel Lyapunov functional and the Kronecker
product, the addressed synchronization problem is shown to
be converted into the feasibility problem of a set of matrix
inequalities. The subsequent state estimation problem is then
dealt with for the same complex networks. Through available
output measurements, a state estimator is designed to estimate
the network states such that the dynamics of the estimation
error is guaranteed to be globally asymptotically stable. Two
simulation examples are provided to show the usefulness of
the proposed global synchronization and estimation schemes.
It is worth mentioning that our main results are still valid even
if the ‘slow subsystems within the network are unstable.

The main contributions of this paper are outlined as fol-
lows: 1) the exponential synchronization and state estimation
problems are addressed, for the first time, for a class of
general nonlinear SPCNs that allow directed and weighted
topologies; 2) a unified framework is established for the
addressed synchronization and problems for the addressed
SPCNs exhibiting both the slow and fast dynamics; and 3)
Sector-like nonlinearities enter into the system model andtheir
impacts on the synchronization and estimation performances
are analyzed. The rest of this paper is organized as follows.
Problem formulation is presented and some preliminaries are
introduced in Section II. In Section III, the globally exponen-
tial synchronization of the SPCNs is studied. Later, the state

estimation of the SPCNs is discussed in Section IV where the
state estimator is designed. In Section V, two numerical ex-
amples are given to demonstrate that our results are relevant to
singularly perturbed dynamical networks. Finally, conclusions
are drawn in Section VI.

Notations: The notations in this paper are standard.
Throughout this paper, for real symmetric matricesX and
Y , the notationX ≤ Y (respectively,X < Y ) means that
the matrix X − Y is negative semi-definite (respectively,
negative definite).In is the identity matrix of ordern. R

n

andRn×m denote then-dimensional Euclidean space and the
set of all real matrices with dimensionn × m, respectively.
If A is a square matrix,λmax(A) (respectively,λmin(A))
means the largest (respectively, smallest) eigenvalue ofA. The
notationA⊗B stands for the Kronecker product of matrices
A andB. In symmetric block matrices, we use an asterisk
“ ∗ ” to represent a term that is induced by symmetry. The
Hermitian part of a square matrixM is denoted byHe(M) =
M +MT . The superscript“T ” denotes matrix transposition
and diag{· · · } means a block-diagonal matrix. Matrices, if not
explicitly stated, are assumed to have compatible dimensions
for algebraic operations.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a nonlinear singularly perturbed complex network
model consisting ofN linearly coupled identical nodes with
full diagonal inner coupling, where each node is an(n+m)-
dimensional dynamical singularly perturbed system given as
follows:
[

ẋi(t)
ǫżi(t)

]

= f(xi(t), zi(t)) + I(t) + c

N
∑

j=1

dijΘ

[

xj(t)
zj(t)

]

. (1)

Here, i = 1, 2, · · · , N . xi(t) =
[

x1i x2i · · · xni
]T

∈

R
n andzi(t) =

[

z1i z2i · · · zmi

]T
∈ R

m are, respec-
tively, the ‘slow’ and ‘fast’ state vectors of theith node. The
constantǫ (0 < ǫ≪ 1) is the singular perturbation parameter.

f(xi(t), zi(t)) =

[

h(xi(t)) +Hzi(t)
g(xi(t)) +Gzi(t)

]

, whereh(xi(t)) ∈

R
n andg(xi(t)) ∈ R

m are continuously differentiable vector-
valued nonlinear functions,H ∈ R

n×m and G ∈ R
m×m

are constant matrices.I (t) =
[

In(t)
Im(t)

]

is an external input

vector, whereIn(t) =
[

I1(t) I2(t) · · · In(t)
]T

∈

R
n, Im(t) =

[

In+1(t) In+2(t) · · · In+m(t)
]T

∈
R

m. Furthermore,c > 0 is the coupling strength constant.
Θ = diag{Γ,Π} is a constant matrix linking the cou-
pled variables withΓ = diag{γ1, γ2, · · · , γn} and Π =
diag{π1, π2, · · · , πm}, which implies that therth state vari-
able of the ith node of the network is only affected by
the rth state variables of other nodes of the network (r =
1, 2, · · · , n, n + 1, · · · , n + m). The coupling matrixD =
(dij)N×N is the Laplacian matrix representing the structure
of the network, in which the off-diagonal elementsdij(i 6= j)
are defined as follows:
{

dij = dji > 0, if the connection from node j to i exists
dij = 0, otherwise
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which means that the network topology could be directed
and weighted. The diagonal elements of the matrixD are
determined by the following diffusive coupling conditions
[42]:

dii = −

N
∑

j=1,j 6=i

dij , i = 1, 2, · · · , N. (2)

Thus, the Laplacian matrixD is a zero row-sum matrix.
For notational convenience, let us define the following

notations:

yi(t) =

[

xi(t)
zi(t)

]

, Eǫ =

[

In 0
0 ǫIm

]

,

Y (t) =
[

yT1 (t) yT2 (t) · · · yTN (t)
]T
,

F (Y (t)) = [ fT (y1(t)) fT (y2(t)) · · · fT (yN(t)) ]
T
,

I(t) =
[

IT (t) IT (t) · · · IT (t)
]T

and then the network (1) can be rewritten in the following
compact form by means of the Kronecker product:

(IN ⊗ Eǫ)Ẏ (t) = F (Y (t)) + I(t) + c(D ⊗Θ)Y (t). (3)

The nonlinear vector-valued functionsh(·) andg(·) are as-
sumed to satisfy the following sector-like nonlinear functions
which are more general than the traditional Lipschitz-type
ones.

Assumption 1: [25], [26] The nonlinear functionsh(·) and
g(·) are continuous and satisfy

χ1
Tχ2 ≤ 0, (4)

ψ1
Tψ2 ≤ 0, (5)

for any xi(t), xj(t) ∈ R
n (i, j = 1, 2, · · · , N), where

χ1 = h(xi(t)) − h(xj(t)) −B1(xi(t)− xj(t))

χ2 = h(xi(t)) − h(xj(t)) −B2(xi(t)− xj(t))

ψ1 = g(xi(t))− g(xj(t))−D1(xi(t)− xj(t))

ψ2 = g(xi(t))− g(xj(t))−D2(xi(t)− xj(t)).

Here,B1, B2 ∈ R
n×n andD1, D2 ∈ R

m×n are constant
matrices.

For the ‘fast’ part of the singularly perturbed complex
network (1) or (3), as conventionally done in [11], we have
the following assumption.

Assumption 2:The ‘fast’ subsystem of every node is stable,
i.e. the state matrixG is Hurwitz.

Furthermore, the following definition and lemma are pro-
vided for subsequent technical development of the paper.

Definition 1: The complex network (3) is said to be glob-
ally exponentially synchronized if, for any initial values
yi(0)(i = 1, 2, · · · , N), there exist constants0 < ǫ∗ ≪ 1,
η > 0, T > 0 andβ > 0 such that

‖yi(t)− yj(t)‖ ≤ βe−ηt (6)

holds for allt > T , anyǫ ∈ (0, ǫ∗] and anyi, j = 1, 2, · · · , N .
Lemma 1: [25] Let W = (wij)N×N , P ∈ R

n×n, x =
[

xT1 xT2 · · · xTN
]T

and y =
[

yT1 yT2 · · · yTN
]T

with xi, yi ∈ R
n (i = 1, 2, · · · , N). If W = WT and each

row sum ofW is zero, then

xT (W ⊗ P )y = −
∑

1≤i<j≤N

wij(xi − xj)
TP (yi − yj). (7)

In this paper, our main aim is to study the synchronization
problem for the SPCN (3) by deriving sufficient conditions
under which the network (3) is guaranteed to be exponential
synchronized. Furthermore, we will extend the results obtained
to design the desired state estimator for the same complex
network model through available network measurements.

III. SYNCHRONIZATION ANALYSIS

In the section, the globally exponential synchronization
problem for the SPCN (3) by the Lyapunov functional method.

Theorem 1:Let Assumption 1 and Assumption 2 hold.
(i) For a given ǫ > 0, the network (3) can reach globally
exponential synchronization if there exist two scalarsδ1 > 0
and δ2 > 0, three positive definite matricesP1 ∈ R

n×n,
P3 ∈ R

m×m andR ∈ R
m×m, a matrixP2 ∈ R

m×n such
that the following linear matrix inequalities (LMIs) (8)–(9)
hold:

EǫPǫ = Eǫ

[

P1 ǫPT
2

P2 P3

]

> 0 (8)

Ω(ǫ, i, j) =













A ∗ ∗ ∗ ∗
BT D ∗ ∗ ∗
E T 0 −δ1In ∗ ∗
FT 0 0 −δ2Im ∗
0 0 ǫP2 P3 −R













< 0,

(9)

where1 ≤ i < j ≤ N and

A = cNdij(P1Γ + ΓTP1)− δ1B̃1 − δ2D̃1,

B = P1H + PT
2 G+ cNdij(P

T
2 Π+ ǫΓTPT

2 ),

D = R+He(ǫP2H + P3G+ cNdijP3Π),

E = P1 + δ1B̃2, F = PT
2 + δ2D̃2,

B̃1 = He(BT
1 B2)/2, B̃2 = (BT

1 +BT
2 )/2,

D̃1 = He(DT
1 D2)/2, D̃2 = (DT

1 +DT
2 )/2.

(ii) Let P0 = Pǫ|ǫ=0 and E0 = Eǫ|ǫ=0. If there exist two
scalarsδ1 > 0 and δ2 > 0, three positive definite matrices
P1 ∈ R

n×n, P3 ∈ R
m×m, R ∈ R

m×m and matrixP2 ∈
R

m×n such that

E0P0 = PT
0 E0 ≥ 0, (10)

Ω(0, i, j) = Ω(ǫ, i, j)|ǫ=0 < 0, 1 ≤ i < j ≤ N (11)

hold, then the network (3) can reach globally exponential
synchronization for sufficiently smallǫ > 0.

Proof: (i) According to Assumption 1, it follows readily
from (4) that

ιTij(t)

[

(BT
1 B2 +BT

2 B1)/2 −(BT
1 + BT

2 )/2
−(B1 +B2)/2 In

]

ιij(t) ≤ 0

whereιij(t) =

[

xi(t)− xj(t)
h(xi(t)) − h(xj(t))

]

, or, equivalently,
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ιTij(t)

[

B̃1 −B̃2

−B̃T
2 In

]

ιij(t) ≤ 0. (12)

Similarly, we have from (5) that

κ
T
ij(t)

[

D̃1 −D̃2

−D̃T
2 Im

]

κij(t) ≤ 0, (13)

whereκij(t) =

[

xi(t)− xj(t)
g(xi(t)) − g(xj(t))

]

.

To deal with the synchronization of the network (3), we
consider the following Lyapunov function:

V (Y (t)) = eηtY T (t)(W ⊗ EǫPǫ)Y (t), (14)

where W =









N − 1 −1 · · · −1
−1 N − 1 · · · −1
· · · · · · · · · · · ·
−1 −1 · · · N − 1









N×N

is a

zero row-sum matrix. Then, the derivative of (14) along the
trajectories of (3) is

V̇ (Y (t))|(3) = ηeηtY T (t)(W ⊗ EǫPǫ)Y (t)

+2eηtY T (t)(W ⊗ PT
ǫ )(IN ⊗ Eǫ)Ẏ (t)

= eηt[Y T (t)(W ⊗ ηEǫPǫ)Y (t)

+2Y T (t)(W ⊗ PT
ǫ )[F (Y (t))

+ I(t) + c(D ⊗Θ)Y (t)]] (15)

Referring to the structure of matrixW and according to
Lemma 1, we can obtain that

Λ1 = −
∑

1≤i<j≤N

wijν
T
ij(t)ηEǫPǫνij(t)

=
∑

1≤i<j≤N

νTij(t)ηEǫPǫνij(t), (16)

Λ2 = −2
∑

1≤i<j≤N

wijν
T
ij(t)P

T
ǫ ρij(t)

= 2
∑

1≤i<j≤N

νTij(t)P
T
ǫ ρij(t)

+2
∑

1≤i<j≤N

νTij(t)P
T
ǫ

[

H
G

]

(zi(t)− zj(t))(17)

whereΛ1 = Y T (t)(W ⊗ ηEǫPǫ)Y (t), Λ2 = 2Y T (t)(W ⊗

PT
ǫ )F (Y (t)), νij(t) = yi(t) − yj(t) =

[

xi(t)− xj(t)
zi(t)− zj(t)

]

,

ρij(t) = f(yi(t)) − f(yj(t)) =

[

h(xi(t)) − h(xj(t))
g(xi(t)) − g(xj(t))

]

and,

consequently,

2νTij(t)P
T
ǫ ρij(t) = 2(xi(t)− xj(t))

T
[

P1 PT
2

]

ρij(t)

+ 2(zi(t)− zj(t))
T
[

ǫP2 P3

]

ρij(t). (18)

For any real vectorsa, b and any matrixR > 0 of
compatible dimensions, we have the following elementary
inequality

2aT b ≤ aTR−1a+ bTRb (19)

and therefore

2(zi(t)− zj(t))
T
[

ǫP2 P3

]

ρij(t)

≤ (zi(t)− zj(t))
TR(zi(t)− zj(t))

+ρTij(t)

[

ǫPT
2

P3

]

R−1
[

ǫP2 P3

]

ρij(t). (20)

For the term of the external disturbance2Y T (t)(W ⊗
PT
ǫ )I(t)Y T (t), one has

(W ⊗ PT
ǫ )I(t) =







w11P
T
ǫ · · · w1NP

T
ǫ

...
. . .

...
wN1P

T
ǫ · · · wNNP

T
ǫ













I(t)
...

I(t)







=









∑N

j=1 w1jP
T
ǫ I (t)

...
∑N

j=1 wNjP
T
ǫ I(t)









=







0
...
0






. (21)

Noting that the coupling matrixD satisfies the diffusive
coupling condition (2), it follows thatWD = ND and

(W ⊗ PT
ǫ )(cD ⊗Θ) = cND ⊗ (PT

ǫ Θ) (22)

which leads to

2Y T (t)(W ⊗ PT
ǫ )c(D ⊗Θ)Y (t)

= 2Y T (t)(cND ⊗ (PT
ǫ Θ))Y (t)

= 2
∑

1≤i<j≤N

cNdijν
T
ij(t)P

T
ǫ Θνij(t). (23)

Substituting (16)-(23) into (15), it yields from (12) and (13)
that

V̇ (Y (t))|(3) ≤ eηt
∑

1≤i<j≤N

[νTij(t)ηEǫPǫνij(t)

+(xi(t)− xj(t))
T

[

P1

P2

]T

ρij(t)

+ρTij(t)

[

P1

P2

]

(xi(t)− xj(t))

+ρTij(t)

[

ǫPT
2

P3

]

R−1
[

ǫP2 P3

]

ρij(t)

+νTij(t)P
T
ǫ

[

H
G

]

(zi(t)− zj(t))

+(zi(t)− zj(t))
T
[

HT GT
]

Pǫνij(t)

+cNdijν
T
ij(t)(P

T
ǫ Θ+ΘTPǫ)νij(t)

+(zi(t)− zj(t))
TR(zi(t)− zj(t))

−δ1ι
T
ij(t)Mιij(t)− δ2κ

T
ij(t)Nκij(t)]

= eηt
∑

1≤i<j≤N

ζTij(t)Υ(ǫ, i, j)ζij(t), (24)

where

M =

[

B̃1 −B̃2

−B̃T
2 In

]

, N =

[

D̃1 −D̃2

−D̃T
2 Im

]

,

ζij(t) =









xi(t)− xj(t)
zi(t)− zj(t)

h(xi(t))− h(xj(t))
g(xi(t))− g(xj(t))









Υ(ǫ, i, j) =







Ã ∗ ∗ ∗

B̃
T

D̃ ∗ ∗

P1 + δ1B̃
T
2 0 κ1 ∗

P2 + δ2D̃
T
2 0 ǫP3R

−1P2 κ2
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Ã = ηP1 + cNdijHe(P1Γ)− δ1B̃1 − δ2D̃1,

B̃ = ǫηPT
2 + P1H + PT

2 G+ cNdij(P
T
2 Π+ ǫΓTPT

2 ),

D̃ = ǫηP3 +R+ He(ǫP2H + P3G+ cNdijP3Π).

κ1 = ǫ2PT
2 R

−1P2 − δ1In

κ2 = P3R
−1P3 − δ2Im

Using Schur complement,Υ(ǫ, i, j) < 0 is equivalent to












Ã ∗ ∗ ∗ ∗

B̃T D̃ ∗ ∗ ∗

P1 + δ1B̃
T
2 0 −δ1In ∗ ∗

P2 + δ2D̃
T
2 0 0 −δ2Im ∗

0 0 ǫP2 P3 −R













< 0. (25)

According to (9), there exists a small constantη > 0
such that (25) holds. Hence, the inequality (24) results in
V̇ (Y (t))|(3) ≤ 0, which implies V (Y (t)) ≤ V (Y (0)).
Therefore,eηtY T (t)(W ⊗ EǫPǫ)Y (t) is bounded and it can
be obtained that

wijλmin(EǫPǫ)‖yi(t)− yj(t)‖
2

≤
∑

1≤i<j≤N

wij(yi(t)− yj(t))
TEǫPǫ(yi(t)− yj(t))

= Y T (t)(W ⊗ EǫPǫ)Y (t) = O(e−ηt). (26)

Hence, there exist constantsη > 0 andβ > 0 such that

‖yi(t)− yj(t)‖ ≤ βe−ηt. (27)

According to Definition 1, it can be concluded that the
globally exponential synchronization of the network (3) can
be achieved under the condition of (9).

(ii) Similar to [11], [44], we can choosePǫ such that, for
ǫ = 0, the functionalV (Y (t)) makes sense withEǫ = E0

andPǫ = P0 in the descriptor case (i.e.ǫ = 0 in (3)). If the
‘reduced-order’ LMIsΩ(0, i, j) < 0 (1 ≤ i < j ≤ N) hold
for someδ1, δ2, P0 andR, then for sufficiently smallǫ, the
full-order LMIs (9) hold for the sameδ1, δ2, P1, P2, P3

andR. Then, in view of (i) in this theorem, the network (3) is
globally exponential synchronized. This completes the proof.

Remark 1: In Theorem 1, the synchronization problem is
studied for a new type of complex networks with singular
perturbations, where the main result established involvesall
the information about on the system parameters including
those reflecting the slow and fast dynamics as well as the
nonlinearities. Due to the general nonlinearities introduced in
the model, a quadratic Lyapunov function is used to derive
the sufficient conditions that can be checked efficiently viathe
Matlab LMI Toolbox. It would be a possible topic of research
to use non-quadratic Lyapunov functions or direct mathemat-
ical analysis techniques in order to reduce the unnecessary
conservatism.

IV. STATE ESTIMATION

For the complex network (3), sometimes, we can only
know the partial information about the states of the some
network nodes from the network outputs. However, in order
to make use of the networks in practice, it becomes necessary

to estimate the node states through available network output.
Suppose that the output vector of theith node of the network
(3) is described by

Yi(t) = Ciyi(t) =

[

Cxi 0
0 Czi

] [

xi(t)
zi(t)

]

, (28)

wherei = 1, 2, · · · , N, Cxi ∈ R
l1×n andCzi ∈ R

l2×m (l1 +
l2 = l) are known constant matrices andYi(t) ∈ R

l is the
measurement output of theith node.

The state estimator is of the following form

(IN⊗Eǫ)
˙̂
Y (t) = F (Ŷ (t))+I(t)+c(D⊗Θ)Ŷ (t)+K(Y (t)−CŶ (t)),

(29)
where Y (t) =

[

Y T
1 (t) Y T

2 (t) · · · Y T
N (t)

]T
,

C = diag{C1, C2, · · · , CN}, and K =
diag{K1, K2, · · · , KN} are filter parameters to
be designed. Here,Ki = diag{Kxi, Kzi} and
Kxi ∈ R

n×l1 , Kzi ∈ R
m×l2 (i = 1, 2, · · · , N).

Let e(t) =
[

eT1 (t) eT2 (t) · · · eTN(t)
]T

, Ŷ (t)−Y (t)

with ei(t) = ŷi(t) − yi(t) =

[

x̂i(t)− xi(t)
ẑi(t)− zi(t)

]

,

[

exi(t)
ezi(t)

]

and F̂ (e(t)) , F (Ŷ (t))− F (Y (t)). Then, from (3) and (29),
we obtain the following the state error dynamics:

(IN ⊗Eǫ)ė(t) = −KCe(t)+ F̂ (e(t)) + c(D⊗Θ)e(t). (30)

For convenience of development in the sequel, let

Λ3 = T̂diag{In, ǫIm, · · · In, ǫIm}T̂−1

= diag{In, · · · In, ǫIm, · · · ǫIm}, (31)

where T̂ = T1T2 · · ·TN is a product of a series of row-
switching elementary matricesTi ∈ R

N(n+m)×N(n+m) (i =
1, 2, · · · , N), Λ3 = T̂ (IN ⊗Eǫ)T̂

−1. According to the proper-
ties of the row-switching elementary transformation, one has
T̂−1 = T̂ . Hence, we have the following equivalent form of
the system (30)

Λ3ė(t) = −T̂KCe(t) + T̂ F̂ (Y (t)) + cT̂ (D ⊗Θ)e(t),

i.e.
[

INn 0
0 ǫINm

] [

ėx(t)
ėz(t)

]

=

[

κ3 0
0 κ4

] [

ex(t)
ez(t)

]

+

[

h̃(ex(t)) + H̃ez(t)

g̃(ex(t)) + G̃ez(t)

]

, (32)

where

κ3 = −KxCx + cD ⊗ Γ,

κ4 = −KzCz + cD ⊗Π,

ex(t) =
[

eTx1(t) eTx2(t) · · · eTxN(t)
]T

∈ R
Nn,

ez(t) =
[

eTz1(t) eTz2(t) · · · eTzN (t)
]T

∈ R
Nm,

KxCx = diag{Kx1Cx1, Kx2Cx2, · · · , KxNCxN},

KzCz = diag{Kz1Cz1, Kz2Cz2, · · · , KzNCzN},

h̃(ex(t)) + H̃ez(t) =









h(ex1(t)) +Hez1(t)
h(ex2(t)) +Hez2(t)

· · ·
h(exN(t)) +HezN (t)
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=









h(ex1(t))
h(ex2(t))

· · ·
h(exN(t))









+ (IN ⊗H)ez(t),

g̃(ex(t)) + G̃ez(t) =









g(ex1(t)) +Gez1(t)
g(ex2(t)) +Gez2(t)

· · ·
g(exN(t)) +GezN (t)









=









g(ex1(t))
g(ex2(t))

· · ·
g(exN(t))









+ (IN ⊗G)ez(t).

The next goal is to choose a suitableKi such thatŶ (t)
asymptotically approachesY (t). From Assumption 1, it is easy
to verify that

[

ex(t)

h̃(ex(t))

]T [

B̃1 −B̃2

−B̃
T
2 INn

] [

ex(t)

h̃(ex(t))

]

≤ 0, (33)

[

ex(t)
g̃(ex(t))

]T [

D̃1 −D̃2

−D̃
T
2 INm

] [

ex(t)
g̃(ex(t))

]

≤ 0, (34)

where

B̃1 = diag{

N
︷ ︸︸ ︷

B̃1, B̃1, · · · , B̃1},

B̃2 = diag{

N
︷ ︸︸ ︷

B̃2, B̃2, · · · , B̃2},

D̃1 = diag{

N
︷ ︸︸ ︷

D̃1, D̃1, · · · , D̃1},

D̃2 = diag{

N
︷ ︸︸ ︷

D̃2, D̃2, · · · , D̃2}.

For the error system (30) or (32), we have the following
result.

Theorem 2:(i) Let Assumptions 1 and 2 hold. For given
ǫ > 0, Kx = diag{Kx1, Kx2, · · · , KxN} and Kz =
diag{Kz1, Kz2, · · · , KzN}, the error system (30) or
(32) is globally asymptotically stable if there exist two

scalarsδ1 > 0 and δ2 > 0, matrix Pǫ =

[

P1 ǫPT
2

P2 P3

]

with P1 = diag{P11, P12, · · · , P1N} > 0, P2 =
diag{P21, P22, · · · , P2N}, P3 = diag{P31, P32, · · · , P3N} >
0, P1i ∈ R

n×n, P2i ∈ R
m×n, P3i ∈ R

m×m (i =
1, 2, · · · , N) and matrixQ = diag{Q1, Q2, · · · , QN} > 0
with Qi ∈ R

m×m (i = 1, 2, · · · , N) such that the following
LMIs hold:

EǫPǫ > 0, (35)

∆(ǫ) =









E ∗ ∗ ∗ ∗

F G ∗ ∗ ∗

P1 + δ1B̃
T
2 0 −δ1INn ∗ ∗

P2 + δ2D̃
T
2 0 ∗ −δ2INm ∗

0 0 ǫP2 P3 −Q









< 0

(36)

where

Eǫ = diag{INn, ǫINm},

E = He(−P1KxCx + cP1(D ⊗ Γ))− δ1B̃1 − δ2D̃1,

F = −ǫP2KxCx − CT
z K

T
z P2 + cǫP2(D ⊗ Γ)

+c(D ⊗Π)T P2 + H̃TP1 + G̃TP2,

G = Q+ He(−P3KzCz + cP3(D ⊗ Π) + ǫP2H̃ + P3G̃).

(ii) For given Kx = diag{Kx1, Kx2, · · · , KxN}
and Kz = diag{Kz1, Kz2, · · · , KzN}, the error sys-
tem (30) or (32) is globally asymptotically stable for
sufficiently small ǫ > 0 if there exist two scalars
δ1 > 0 and δ2 > 0, matrix P0 = Pǫ|ǫ=0 =
[

P1 0
P2 P3

]

with PT
1 = P1 = diag{P11, P12, · · · , P1N} >

0, P2 = diag{P21, P22, · · · , P2N}, PT
3 = P3 =

diag{P31, P32, · · · , P3N} > 0, P1i ∈ R
n×n, P2i ∈

R
m×n, P3i ∈ R

m×m (i = 1, 2, · · · , N) and matrixQ =
diag{Q1, Q2, · · · , QN} > 0 with Qi ∈ R

m×m (i =
1, 2, · · · , N) satisfying the following LMIs:

E0P0 = PT
0 E0 ≥ 0, (37)

∆(0) = ∆(ǫ)|ǫ=0 < 0, (38)

whereE0 = Eǫ|ǫ=0.
Proof: (i) Consider the following Lyapunov functional:

V (e(t)) = eT (t)EǫPǫe(t), (39)

whereEǫ =

[

INn 0
0 ǫINm

]

, Pǫ =

[

P1 ǫPT
2

P2 P3

]

, PT
1 =

P1 > 0, PT
3 = P3 > 0. Differentiating (32) with respect tot

along the trajectories of (32), we obtain

V̇ (e(t))|(32) = 2

[

ex(t)
ez(t)

]T

PT
ǫ

([

κ3 0
0 κ4

] [

ex(t)
ez(t)

]

+

[

h̃(ex(t)) + H̃ez(t)

g̃(ex(t)) + G̃ez(t)

])

. (40)

Due to (19), there exists a matrixQ > 0 (Q ∈ R
Nm×Nm)

such that

2

[

ex(t)
ez(t)

]T

PT
ǫ

[

h̃(ex(t)) + H̃ez(t)

g̃(ex(t)) + G̃ez(t)

]

= 2eTx (t)
[

P1 PT
2

]

[

h̃(ex(t))
g̃(ex(t))

]

+2eTz (t)
[

ǫP2 P3

]

[

h̃(ex(t))
g̃(ex(t))

]

+2

[

ex(t)
ez(t)

]T

PT
ǫ

[

H̃

G̃

]

ez(t)

≤ 2eTx (t)
[

P1 PT
2

]

[

h̃(ex(t))
g̃(ex(t))

]

+ eTz (t)Qez(t)

+

[

h̃(ex(t))
g̃(ex(t))

]T [

ǫPT
2

P3

]

Q−1

[

ǫPT
2

P3

]T [

h̃(ex(t))
g̃(ex(t))

]

+2

[

ex(t)
ez(t)

]T

PT
ǫ

[

H̃

G̃

]

ez(t).

Hence, it follows that

V̇ (e(t))|(32)

≤ 2

[

ex(t)
ez(t)

]T

PT
ǫ

[

κ3 0
0 κ4

] [

ex(t)
ez(t)

]
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+2eTx (t) [ P1 PT
2 ]

[

h̃(ex(t))
g̃(ex(t))

]

+eTz (t)Qez(t)

+

[

h̃(ex(t))
g̃(ex(t))

]T [

ǫPT
2

P3

]

Q−1

[

ǫPT
2

P3

]T [

h̃(ex(t))
g̃(ex(t))

]

+2

[

ex(t)
ez(t)

]T

PT
ǫ

[

H̃

G̃

]

ez(t)

−δ1

[

ex(t)

h̃(ex(t))

]T [

B̃1 −B̃2

−B̃
T
2 INn

] [

ex(t)

h̃(ex(t))

]

−δ2

[

ex(t)
g̃(ex(t))

]T [

D̃1 −D̃2

−D̃
T
2 INm

] [

ex(t)
g̃(ex(t))

]

= ϑTMϑ

whereϑ =
[

eTx (t) eTz (t) h̃T (ex(t)) g̃T (ex(t))
]T

and

M =









E FT P1 + δ1B̃2 PT
2 + δ2D̃2

∗ G 0 0

∗ ∗ κ5 ǫPT
2 Q

−1P3

∗ ∗ ∗ κ6









(41)

with κ5 = −δ1INn+ǫ
2PT

2Q
−1P2, κ6 = −δ2INm+P3Q

−1P3.
According to Schur Complement Lemma,M < 0 is equiv-
alent to (35), which implies that‖ŷi(t) − yi(t)‖ → 0 (t →
∞, i = 1, 2, · · · , N).

(ii) Along the similar line as in the proof of (ii) of Theorem
1, we can obtain a descriptor case whenǫ = 0. The ‘reduced-
order’ results (37) and (38) hold naturally and the proof is
therefore omitted.

From Theorem 2, it is still very difficult to find a global
solution to the nonlinear inequality (36) in order to selectan
appropriate state estimator for system (3). Next, let us provide
a procedure for constructing the state estimator for system(3).
To this end, it follows from (19) that

[

0 −ǫCT
xK

T
x PT

2 − PT
2KzCz

−ǫP2KxCx − CT
z K

T
z P2 0

]

=

[

0 ǫPT
2

P2 0

]T [

−KxCx 0
0 −KzCz

]

+

[

−KxCx 0
0 −KzCz

]T [

0 ǫPT
2

P2 0

]

≤

[

0 ǫPT
2

P2 0

]T [

P−1
1 0
0 P−1

3

] [

0 ǫPT
2

P2 0

]

+ κT7

[

P1 0
0 P3

]

κ7

=

[

0 ǫPT
2

P2 0

]T [

P−1
1 0
0 P−1

3

] [

0 ǫPT
2

P2 0

]

+ κT8

[

P−1
1 0
0 P−1

3

]

κ8 (42)

where κ7 = diag{−KxCx,−KzCz} and κ8 =
diag{−P1KxCx,−P3KzCz}.

Substituting (42) into (36) and using Schur Complement
Lemma, the following results can be easily accessible from
Theorem 2 and therefore the proof is omitted.

Theorem 3:(i) Let Assumption 1 and Assumption 2 hold.
For a givenǫ > 0, if there exist two scalarsδ1 > 0 andδ2 > 0

and matricesPǫ =

[

P1 ǫPT
2

P2 P3

]

with

P1 = diag{P11, P12, · · · , P1N} > 0,

P2 = diag{P21, P22, · · · , P2N},

P3 = diag{P31, P32, · · · , P3N} > 0,

Q = diag{Q1, Q2, · · · , QN} > 0,

Yx = diag{Yx1, Yx2, · · · , YxN},

Yz = diag{Yz1, Yz2, · · · , YzN}

such that the following LMIs

EǫPǫ > 0, (43)

Λ(ǫ) < 0 (44)

hold, where

Ẽ = He(−YxCx + cP1(D ⊗ Γ))− δ1B̃1 − δ2D̃1,

F̃ = cǫP2(D ⊗ Γ) + c(D ⊗Π)T P2 + H̃TP1 + G̃T P2,

G̃ = Q+ He(−YzCz + cP3(D ⊗Π) + ǫP2H̃ + P3G̃),

then the system (29) is a state estimator of the complex
network (3). In this case, the estimator gain matrices can be
chosen asKx = P−1

1 Yx andKz = P−1
3 Yz .

(ii) Under Assumption 1, from the conclusion in (i),
the system (29) becomes a state estimator of the com-
plex network (3) for all sufficiently smallǫ > 0 if
there exist two scalarsδ1 > 0, δ2 > 0 and matrices
P0 = Pǫ|ǫ=0, PT

1 = P1 = diag{P11, P12, · · · , P1N} >
0, P2 = diag{P21, P22, · · · , P2N}, PT

3 = P3 =
diag{P31, P32, · · · , P3N} > 0 with P1i ∈ R

n×n, P2i ∈
R

m×n, P3i ∈ R
m×m (i = 1, 2, · · · , N), and Q =

Λ(ε) =





























Ẽ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

F̃ G̃ ∗ ∗ ∗ ∗ ∗ ∗ ∗

P1 + δ1B̃
T
2 0 −δ1INn ∗ ∗ ∗ ∗ ∗ ∗

P2 + δ2D̃
T
2 0 0 −δ2INm ∗ ∗ ∗ ∗ ∗

0 0 ǫP2 P3 −Q ∗ ∗ ∗ ∗
−YxCx 0 0 0 0 −P1 ∗ ∗ ∗

0 −YzCz 0 0 0 0 −P3 ∗ ∗

0 ǫPT
2 0 0 0 0 0 −P1 ∗

P2 0 0 0 0 0 0 0 −P3
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diag{Q1, Q2, · · · , QN} > 0 with Qi ∈ R
m×m (i =

1, 2, · · · , N) satisfying the following LMIs:

E0P0 = PT
0 E0 ≥ 0, (45)

Λ(0) = Λ(ǫ)|ǫ=0 < 0 (46)

whereE0 = Eǫ|ǫ=0. Under such conditions, the estimator gain
matrices of the system (3) can be parameterized asKx =
P−1
1 Yx andKz = P−1

3 Yz.
Remark 2: In Theorem 1 and Theorem 3, the exponential

synchronization and the state estimation problems are thor-
oughly investigated for a class of general nonlinear SPCNs
that allow directed and weighted topologies. Within a unified
framework, the existence of the desired synchronization and
estimation is guaranteed through solving a set of matrix
inequalities, and both the slow and fast dynamics are handled
using an integrated matrix analysis method. Especially, the
sector-like nonlinearities in the system model do have a major
impact on the synchronization and estimation performances
as the sector bounds are explicitly reflected in the obtained
existence conditions.

V. NUMERICAL EXAMPLE

In this section, two numerical examples are presented to
illustrate the validity of the theoretical results on the synchro-
nization and state estimation problems for the nonlinear SPCN
(1). To better demonstrate the effectiveness of the criteria, two
systems with different orders of the slow and fast states are
chosen to verify the required performances.
Example 1:Consider the network model (1) with three nodes,
where

n = 1, m = 2, H =
[

1 0.5
]

, G =

[

−3 −3
3 −5

]

,

D =





−0.2 0.1 0.1
0.1 −0.2 0.1
0.1 0.1 −0.2



 , Γ =
[

−5
]

,

Π =

[

−0.6 0
0 −0.5

]

, c = 0.2.

Let the nonlinear vector-valued functions be given by

h(x1i(t)) = −2x21i(t)e
−0.01x1i(t) + 5,

g(x1i(t)) =

[

−x21i(t)e
−0.03x1i(t) + 5

−x1i(t)e
−0.03x1i(t)

]

, i = 1, 2, 3.

It can be verified that the following coefficients are satisfied
Assumption 1.

B1 = −4, B2 = −4, D1 =

[

−2
−2

]

, D2 =

[

−3
−4

]

.

When ǫ = 0.05, by using the Matlab LMI Toolbox, a
feasible solution is found based on the LMI (9) as follows:

P1 = 3.3147, P2 =

[

1.2748
0.3216

]

,

P3 =

[

1.8713 −0.2518
−0.2518 1.5679

]

,

R =

[

7.7185 −0.7465
−0.7465 8.0241

]

,

δ1 = 0.8036, δ2 = 1.2475.

Whenǫ = 0, the results are:

P1 = 3.2998, P2 =

[

1.2731
0.3110

]

,

P3 =

[

1.8325 −0.2454
−0.2454 1.5545

]

,

R =

[

7.6175 −0.7387
−0.7387 7.9770

]

,

δ1 = 0.7918, δ2 = 1.2100.

Therefore, according to Theorem 1, we can conclude that
the complex dynamical network (1) with given parameters is
globally exponentially synchronized, which is further verified
by the simulation result shown in Fig. 1. The figures display
the synchronization behavior very well for all the states of
network (1).

Next, let us validate the theoretical results for the state
estimation problem. Whenǫ = 0.05 and

Cx1 =

[

0.9
0.2

]

, Cx2 =

[

1
0.2

]

, Cx3 =

[

0.1
0.8

]

,

Cz1 =
[

2 1
]

, Cz2 =
[

1 1
]

, Cz3 =
[

0.5 1
]

,

the estimator gain matrices are given by solving the LMIs (43)
and (44) as

Kx =

[

0.1232 0.0390 0 0 0 0
0 0 0.1704 0.0494 0 0
0 0 0 0 0.2492 0.0214

]

and

Kz =













0.2688 0 0
0.1299 0 0

0 0.3795 0
0 0.1722 0
0 0 0.5369
0 0 0.1176













.

Whenǫ = 0, we get the following estimator gain matrices

Kx =

[

0.1193 0.0365 0 0 0 0
0 0 0.1644 0.0459 0 0
0 0 0 0 0.2398 0.0153

]

and

Kz =













0.2733 0 0
0.1274 0 0

0 0.3840 0
0 0.1683 0
0 0 0.5445
0 0 0.1033













.

According to Theorem 3, the system (29) becomes a state
estimator of the singularly perturbed complex network (1) or
(3). The numerical simulation validates the theoretical results
perfectly. Fig. 2 shows the evolutions of the states and their
estimators of node 1, respectively. From the three figures, it is
noticed that the state estimation approaches the original system
state asymptotically. Specifically, the estimate errors are shown
clearly in Figs. 3 for all states of node 1.
Example 2:Next, an complex network with unstable “slow”
subsystems is selected to demonstrate that the proposed syn-
chronization and estimation schemes still work well in such
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an unstable case. Similar to Example 1, the system parameters
are chosen as follows:

n = 2, m = 1, N = 3, H =

[

3
1

]

,

G = −2, Γ =

[

1 0
0 −0.6

]

, Π = −0.5,

D =





−0.2 0.1 0.1
0.1 −0.2 0.1
0.1 0.1 −0.2



 , c = 0.2,

h(x(t)) =

[

2x21i(t)e
−0.01x1i(t) + 5

x22i(t)e
−0.03x2i(t) + 5

]

,

g(x(t)) =
[

−x1i(t)e
−0.03x1i(t)

]

, i = 1, 2, 3.

It can also be checked that

B1 =

[

−3 0.2
0 −4

]

, B2 =

[

−3 0.2
0 −2

]

,

D1 =
[

1 0.2
]

, D2 =
[

0.8 0.2
]

.

Solving LMIs (9), we have the following results. Whenǫ =
0.2,

P1 =

[

3.4927 −1.9848
−1.9848 8.6963

]

,

P2 =
[

−0.4450 0.1889
]

,

P3 =
[

7.3937
]

,

R =
[

16.3262
]

, δ1 = 3.0873, δ2 = 11.8949.

Whenǫ = 0,

P1 =

[

0.7153 −0.5602
−0.5602 2.0382

]

,

P2 =
[

−0.2516 −0.0594
]

,

P3 =
[

2.1082
]

,

R =
[

4.5913
]

, δ1 = 0.6737, δ2 = 3.5950.

According to Theorem 1, we can conclude that the complex
dynamical network (1) is globally exponentially synchronized
with given parameters. Also, the simulation result shown in
Fig. 4 illustrates that all states of network (1) are synchronized
even if the ‘slow’ subsystems are unstable. Next, let us discuss
the state estimation case. Whenǫ = 0.2 and

Cx1 =

[

0.9 0.3
0.2 0.8

]

,

Cx2 =

[

1 1
0.2 0.7

]

,

Cx3 =

[

0.1 0.7
0.8 0.2

]

,

Cz1 =

[

2
1

]

, Cz2 =

[

1
1

]

, Cz3 =

[

0.5
1

]

,

we solve (43) and (44) to obtain

Kx =













0.1384 0.1615 0 0 0 0
0.1186 0.0045 0 0 0 0

0 0 0.2420 0.0117 0 0
0 0 0.0308 0.0684 0 0
0 0 0 0 0.8594 −0.1554
0 0 0 0 0.0253 0.1036













and

Kz =

[

0.0835 0.1226 0 0 0 0
0 0 −0.0242 0.1708 0 0
0 0 0 0 −0.0030 0.0816

]

.

Whenǫ = 0, we get the following estimator gain matrices

Kx =













0.1712 0.1642 0 0 0 0
0.1186 0.0535 0 0 0 0

0 0 0.2512 0.0736 0 0
0 0 0.0641 0.1025 0 0
0 0 0 0 0.8698 −0.1519
0 0 0 0 0.0247 0.1081













and

Kz =

[

0.1226 0.1299 0 0 0 0
0 0 0.0401 0.1942 0 0
0 0 0 0 0.0415 0.1253

]

.

According to Theorem 3, the system (29) becomes a state
estimator of the singularly perturbed complex network (1)
or (3). Fig. 5 depicts the evolutions of the states and their
estimators of node 1, which shows that the estimated state
asymptotically tends to the original state. Furthermore, the
estimation errors of statesx11(t), x21(t) andz11(t) are shown
in Fig. 6.

VI. CONCLUSIONS

In this paper, we have investigated the exponential synchro-
nization and state estimation problems for a class of nonlinear
SPCNS with each node subjecting to both ‘slow’ and ‘fast’
dynamics. By utilizing a novel Lyapunov functional and the
Kronecker product, the addressed synchronization problemhas
been solved by checking the feasibility of a set of matrix
inequalities. The subsequent state estimation problem hasthen
been dealt with for the same complex networks. Through avail-
able output measurements, a state estimator has been designed
to estimate the network states such that the dynamics of the
estimation error is guaranteed to be globally asymptotically
stable. Two simulation examples have been provided to show
the usefulness of the proposed global synchronization and
estimation schemes. Our main results are still valid even if
the ‘slow subsystems within the network are unstable.

It is worth mentioning that, in general, the slow dynamics
could be either stable or unstable. Our main results for
synchronization and state estimation problems are valid for
both the stable and unstable cases,which has been con-
firmed through our two examples. On the other hand, in
the derivation of our main results, we do need the technical
assumption that that the fast dynamics is stable. In fact, if
the fast dynamics is unstable, then the boundary layer caused
by the fast dynamics doesn’t decay and the corresponding
synchronization/estimation problems cannot be dealt withby
the unified approach since the fast and slow dynamics will
operate on two distinctively different scales. We are currently
developing more general techniques that would avoid the
restrictive assumption and the results will appear in the near
future. Also, it would be interesting to employ more up-to-date
techniques (e.g. data-driven techniques [45], [46] and fuzzy
control approaches [2], [3], [5], [14]) to enhance the practical
relevance of the main results.
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Fig. 1. Comparison of state trajectories of the statesX1(t), Z1(t) and
Z2(t).
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Fig. 2. State trajectories of the original states and their estimates of the first
node system.
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Fig. 5. State trajectories of the original states and their estimates of the first
node system.
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