71 research outputs found

    Durability of Concrete Using Foundry Waste Sand

    Get PDF
    A thesis presented to the faculty of the College of Business and Technology Morehead State University in partial fulfillment of the requirements for the Degree Master of Science by Meshari Alrajab on April 20, 2021

    http://www.medscape.com/viewarticle/819572_print

    Get PDF
    Abstract Introduction: Ultrasonography is being increasingly utilized in acute care settings with expanding applications. Pneumothorax evaluation by ultrasonography is a fast, safe, easy and inexpensive alternative to chest radiographs. In this review, we provide a comprehensive analysis of the current literature comparing ultrasonography and chest radiography for the diagnosis of pneumothorax. Methods: We searched English-language articles in MEDLINE, EMBASE and Cochrane Library dealing with both ultrasonography and chest radiography for diagnosis of pneumothorax. In eligible studies that met strict inclusion criteria, we conducted a meta-analysis to evaluate the diagnostic accuracy of pleural ultrasonography in comparison with chest radiography for the diagnosis of pneumothorax. Results: We reviewed 601 articles and selected 25 original research articles for detailed review. Only 13 articles met all of our inclusion criteria and were included in the final analysis. One study used lung sliding sign alone, 12 studies used lung sliding and comet tail signs, and 6 studies searched for lung point in addition to the other two signs. Ultrasonography had a pooled sensitivity of 78.6% (95% CI, 68.1 to 98.1) and a specificity of 98.4% (95% CI, 97.3 to 99.5). Chest radiography had a pooled sensitivity of 39.8% (95% CI, 29.4 to 50.3) and a specificity of 99.3% (95% CI, 98.4 to 100). Our meta-regression and subgroup analyses indicate that consecutive sampling of patients compared to convenience sampling provided higher sensitivity results for both ultrasonography and chest radiography. Consecutive versus nonconsecutive sampling and trauma versus nontrauma settings were significant sources of heterogeneity. In addition, subgroup analysis showed significant variations related to operator and type of probe used. Conclusions: Our study indicates that ultrasonography is more accurate than chest radiography for detection of pneumothorax. The results support the previous investigations in this field, add new valuable information obtained from subgroup analysis, and provide accurate estimates for the performance parameters of both bedside ultrasonography and chest radiography for pneumothorax evaluation

    Characterization studies of the acquired enamel pellicle formed in vitro

    Full text link
    PLEASE NOTE: This work is protected by copyright. Downloading is restricted to the BU community: please click Download and log in with a valid BU account to access. If you are the author of this work and would like to make it publicly available, please contact [email protected] photographs included.Thesis (D.Sc.D.)--Boston University, Henry M. Goldman School of Graduate Dentistry, 1990 (Oral Biology)Bibliography : leaves 86-99.The purpose of this study is the identification and characterization of those salivary proteins which constitute precursor proteins to the acquired enamel pellicle. The goal of this investigation is to identify proteins in pellicles formed in vitro by the adsorption of pure glandular secretions to hydroxyapatite powder (HA). Either parotid or submandibular secretions were incubated with HA at a ratio of 5 mg/mlof saliva for 24 hours, in the presence of 0.02% NaN3. The suspension was centrifuged at 27,000 x g, and the pellet was washed with 0.2M NaCl, pH 7.5 and stirred at room temperature for 24 hours in 0.2M EDTA pH 7.5 to solubilize the mineral phase. The adsorbed protein was recovered following dialysis against water and lyophilization. The proteins were characterized by means of electrophoresis, using 7.5% polyacrylamide discontinuous gels, gradient SDS-PA gels, and Isoelectric focusing gels. Further characterization was carried out by means of C18 reversed phase high performance liquid chromatography. The amino acid compositions of these proteins were also determined. These studies led to the identification of specific phosphoproteins, namely proline-rich proteins, statherin, and histatins as major constituents of the in vitro pellicle derived from both parotid and submandibular saliva. In addition, minor components were identified in submandibular derived pellicle

    Lung POCUS guides patient management

    No full text

    Slide Over Chest X-Ray

    No full text

    Pleural Ultrasound

    No full text
    Abstract Introduction: Ultrasonography is being increasingly utilized in acute care settings with expanding applications. Pneumothorax evaluation by ultrasonography is a fast, safe, easy and inexpensive alternative to chest radiographs. In this review, we provide a comprehensive analysis of the current literature comparing ultrasonography and chest radiography for the diagnosis of pneumothorax. Methods: We searched English-language articles in MEDLINE, EMBASE and Cochrane Library dealing with both ultrasonography and chest radiography for diagnosis of pneumothorax. In eligible studies that met strict inclusion criteria, we conducted a meta-analysis to evaluate the diagnostic accuracy of pleural ultrasonography in comparison with chest radiography for the diagnosis of pneumothorax. Results: We reviewed 601 articles and selected 25 original research articles for detailed review. Only 13 articles met all of our inclusion criteria and were included in the final analysis. One study used lung sliding sign alone, 12 studies used lung sliding and comet tail signs, and 6 studies searched for lung point in addition to the other two signs. Ultrasonography had a pooled sensitivity of 78.6% (95% CI, 68.1 to 98.1) and a specificity of 98.4% (95% CI, 97.3 to 99.5). Chest radiography had a pooled sensitivity of 39.8% (95% CI, 29.4 to 50.3) and a specificity of 99.3% (95% CI, 98.4 to 100). Our meta-regression and subgroup analyses indicate that consecutive sampling of patients compared to convenience sampling provided higher sensitivity results for both ultrasonography and chest radiography. Consecutive versus nonconsecutive sampling and trauma versus nontrauma settings were significant sources of heterogeneity. In addition, subgroup analysis showed significant variations related to operator and type of probe used. Conclusions: Our study indicates that ultrasonography is more accurate than chest radiography for detection of pneumothorax. The results support the previous investigations in this field, add new valuable information obtained from subgroup analysis, and provide accurate estimates for the performance parameters of both bedside ultrasonography and chest radiography for pneumothorax evaluation. Introduction Chest ultrasonography (US) is gaining more attention in critical care and emergency medicine literature. US has been used recently for evaluation of pneumothorax and other lung pathologies. Several early trials established the diagnostic signs of pneumothorax on US and showed a strong superiority in favor of US over chest radiography (CXR). Despite those and other cumulating original research evidence favoring ultrasonography, US remained underused. In fact, the most recent British thoracic society guidelines on pleural procedures and thoracic ultrasound stated that "The utility of thoracic ultrasound for diagnosing a pneumothorax is limited in hospital practice due to the ready availability of chest x-rays and conflicting data from published reports". By using a regression-analysis model of the published literature, Lijmer et al. We aimed to conduct an accurate meta-analysis of the available literature that included high-quality articles, and avoiding studies that evaluated populations with known pneumothorax and studies that used different verification methods. Additionally, we evaluated the studies for other possible sources of bias. We also intended to include the recent publications that were not included in previous analyses. Furthermore, we specifically planned to address the inherent heterogeneity found that could not be addressed in the previously published meta-analyses. We addressed issues related to operator, type of probe, and patient-population specifics. We believe that our study adds valuable information to the current literature in this field that could guide the application of pleural ultrasonography in the clinicians' daily practices. Materials and Methods Study Design and Data Extraction We performed a literature review and meta-analysis of published research articles evaluating the diagnostic accuracy of US in comparison with CXR. Original articles published in the English language up to March 2013 were searched in Medline, EMBASE, and the Cochrane Library. Our initial search was broad and included the following words: ("ultrasound" or "sonography" or "ultrasonography" or "radiography" or "chest film" or "chest radiograph") and ("pneumothorax" or "aerothorax") and ("sensitivity" and "specificity"). We noted a large number of articles published during the study, and so we performed three separate searches during the entire review process (December 2011, May 2012, and March 2013; EMBASE was accessed in January 2013). The number of articles and abstracts depicted in the diagram Studies Inclusion Criteria The inclusion criteria we used to select articles are as follows: (a) Original prospective blinded studies comparing the performance of US and CXR for pneumothorax diagnosis; (b) compared the two tests with one gold standard, the computed tomography (CT) scan of the chest; (c) avoided studies that included diseased populations (populations with known pneumothorax); (d) Described the diagnostic criteria for pneumothorax on US in clear details; And (e) met quality standards, as assessed by the 14-item Quality Assessment of Diagnostic Accuracy Studies (QUADAS2) All patients included in our analysis had CT scans in addition to CXR and US examinations. If a study included patients with differential verifications, only patients with CT scans were included. If a study included patients studied by US for other conditions in addition to pneumothorax, only patients evaluated for pneumothorax were included. Review Process We identified 601 potential articles in our initial searches (see http://www.medscape.com/viewarticle/819572_print 2 di 9 18/02/2014 13:57 Data Synthesis After extraction of data from the original studies, data were arranged in 2 × 2 tables expressing true positive (TP), false positive (FP), false negative (FN), and true negative (TN). In cases of uncertainty about data or the quality, the author was contacted (one case Data Analysis We assumed that US and CXR have different accuracy when applied to different patient populations by different operators. For this reason, we used a random-effect model in our meta-analysis to calculate pooled sensitivity and specificity with corresponding 95% confidence intervals (CIs). Other data such as diagnostic odds ratio (DOR) and http://www.medscape.com/viewarticle/819572_print 3 di 9 18/02/2014 13:57 receiver operative curves (ROCs) were also obtained. We used Meta-DiSc, version 1.4 software (Ramon y Cajal Hospital, Madrid, Spain). We also used Review Manager 5.2, mainly to assess quality and risk of bias. Results of analysis using both software programs were identical. However, for this report, all data and graphs were obtained from the results of Meta-DiSc analysis, as it provided more information for reporting. To explain the observed heterogeneity, we performed meta-regression and subgroup analyses, as applicable, using all observed covariates. Meta-regression is a regression analysis of the effects of covariates in relation to each other at the level of studies. The effect sizes were explained as diagnostic odds ratio (DOR) and relative diagnostic odds ratio (RDOR) in relation to the dependent variable of interest. To compare performance-parameter estimates (sensitivity, specificity, or DOR) for different diagnostic tests at 5% level, we used the calculated 95% confidence intervals (CIs) for a parameter estimate for the diagnostic tests being compared. In comparison with previous studies, we observed a significant difference in the estimated parameter for two values being compared if the 95% CI for the parameter of interest in our estimate did not include the parameter estimate in the other studies' estimates or vice versa. Results From the 13 chosen studies (), we extracted the data from each study and conducted a random-effect model meta-analysis. In addition to quality assessment, we assessed for risk of bias and considered covariates that can affect heterogeneity. A total of 3,028 hemithoraces from 1,514 patients were included in the analysis. Our study revealed a clear superiority of US over CXR. For US, both trauma settings (RDOR = 32.87; 95% CI, 2.42 to 447.03; P = 0.018) and consecutive sampling (RDOR = 21.99; 95% CI, 1.98 to 244.93; P = 0.021) were significant contributors to heterogeneity by using meta-regression analysis (Additional file 1: eTable S3). Subgroup analysis also showed that in consecutive sampling studies, the pooled sensitivity improved to 85.3% (95% CI, 68 to 100), whereas in nonconsecutive (convenience) sampling studies, the pooled sensitivity decreased to 73.6% (95% CI, 60.4 to 86.7). Studies that used the high-frequency linear array probe had a pooled sensitivity of 82.2% (95% CI, 68.8 to 95.5), whereas those using a convex array probe had a pooled sensitivity of 76% (95% CI, 59.8 to 92.3). Operator (radiologist versus others) was not a significant variable in our analysis. However, emergency physician-performed US had better sensitivity than nonemergency physicians-performed US (82.3% versus 72.8%). (Additional file 1contains statistical tables for both CXR and US subanalyses). In the discussion sections of the reviewed articles, Ultrasonography time, when assessed, Discussion In the past 3 years, at least nine published original prospective research articles addressed the diagnostic accuracy of pleural ultrasonography for the diagnosis of pneumothorax, reflecting the growing interest in this valuable test as an alternative to CXR. Six of those articles versus 88% We believe that our study provides better estimates of the test parameters because of the inclusion of a large number of good-quality standardized studies and patients (total of 1,514 patients) in the analysis. Our meta-analysis allowed, for the first time, the identification of significant sources of variation in the effect size among the included studies. It is the first to compare CT scan, US, and CXR in the same population on this large scale. On all counts US remains superior to CXR for detection of pneumothorax, even after controlling for possible sources of heterogeneity (the lowest US http://www.medscape.com/viewarticle/819572_print 5 di 9 18/02/2014 13:57 subgroup sensitivity was 73.6%). With positive test results, patients tested with US have greater odds of having an accurate diagnosis of pneumothorax than do those tested with CXR (DOR, 279.31 versus 87.19). The majority of studies included in our analysis were in trauma settings; this was expected, as an indication for CT scan of the chest is readily available in this setting. Our results indicated that a linear probe provided better sensitivity (82% versus 76%); this is likely because of the better views of the lung sliding sign obtained with this high-resolution probe. In our study, emergency physicians performed better US than did nonemergency physicians (sensitivity, 82.3% versus 72.8%). This could be related to their early experience in thoracic US use as part of the eFAST (Extended Focused Assessment with Sonography for Trauma) that emphasized the importance of training and experience in this operatordependent test. Our study is not without limitations. Despite meticulous efforts to explain possible causes of heterogeneity, we were unable to account for some minor sources, especially on the US analysis, which had some minimal residual heterogeneity after meta-regression ( T 2 = 0.2; Additional file 1: eTable S3). We did not evaluate our meta-analysis for publication bias. We kept our search very broad initially to overcome this issue but included all studies that performed US and CXR as well as CT scan as the gold standard to maintain accuracy and avoid overestimates of diagnostic accuracy. Studies published in languages other than English, with the exception of one, As stated earlier, most of our included studies were in trauma/emergency department settings. This was mainly the result of including studies that compared both tests with the gold standard (CT scan of the chest). It should be noted that the severity of trauma was not assessed in the majority of those studies. The consecutive-sampling studies (which showed higher sensitivity) may have allowed a wide spectrum of patients to be included in those studies. Furthermore, most pneumothoraces missed by CXR were occult and detected only by US and CT scans. In one study It is important to note that the test characteristics are only part of the assessment of a diagnostic test performance, and the value of any test ultimately lies in its effects on patient outcome. Other important factors such as potential of harm as a consequence of the test (in our case, possible exposure to unnecessary procedures to treat a small pneumothorax or exposure to ionizing radiation), physician's perception and confidence in test results, as well as the ability to make treatment decisions based on test results were not addressed in our study. [25] Future research can be designed to address the downstream effects of two separate testing strategies specifically for pneumothorax: one that uses CXR and another for US. Possible outcome measures are number of invasive procedures and subsequent tests resulting from the index test, and total condition-related cost of care. We expect US to be safer, more convenient, more cost effective, and to outperform CXR in most aspects. Conclusion Despite the lower sensitivity and lower DOR found in our analysis, US remains much more sensitive than CXR for identification of pneumothorax. Our analysis supports the available evidence in favor of ultrasonography over chest radiography and provides an objective assessment of the diagnostic performance of both tests in the well-designed published studies that we included in our meta-analysis. Our analysis identifies several important factors that increase the accuracy of US in detection of pneumothorax, including operator experience, patient population, and the type of probe used. Sidebar Key Message
    corecore