160 research outputs found
Recommended from our members
The Performance of Ce Surface Treated Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnects
This research deals with the effect of a Ce surface treatment on the behavior of Fe-Cr-Mn ferritic stainless steels which may have application in SOFC technology. This treatment consisted of applying a slurry of CeO2 and a halide activator to the surface of coupons. After the slurry dried the coupons were heated to 900C in a controlled atmosphere furnace for 12 hours. The effectiveness of the treatment on commercial (Type 409 (12Cr), Type 430 (18Cr), Crofer 22APU (22Cr), Type 446(26Cr)) and experimental (NETL F9 (12Cr) and NETL F5 (22Cr)) alloys as a function of Cr content will be presented. The oxidation behavior of the alloys was assessed by exposing coupons (untreated and treated) to moist air at 800C. Area specific resistance (ASR) was measured at 800C. In general, the rare earth treatment effectively reduced the oxidation rate, resulting in thinner oxide scales and less internal oxidation
Recommended from our members
Influence of a Cerium surface treatment on the oxidation behavior of commercial Fe- and Ni-base alloys
Recommended from our members
Surface Modifications for Oxidation Resistance
None provided. Presentation only - PDF of slide presentation attached
Recommended from our members
Influence of alloy content and a cerium surface treatment on the oxidation behavior of Fe-Cr ferritic stainless steels
The cost of solid oxide fuel cells (SOFC) can be significantly reduced by using interconnects made from ferritic stainless steels. In fact, several alloys have been developed specifically for this application (Crofer 22APU and Hitachi ZMG323). However, these steels lack environmental stability in SOFC environments, and as a result, degrade the performance of the SOFC. A steel interconnect can contribute to performance degradation through: (i) Cr poisoning of electrochemically active sites within the cathode; (ii) formation of non-conductive oxides, such as SiO2 or Al2O3 from residual or minor alloying elements, at the base metal-oxide scale interface; and/or (iii) excessive oxide scale growth, which may also retard electrical conductivity. Consequently, there has been considerable attention on developing coatings to protect steel interconnects in SOFC environments and controlling trace elements during alloy production. Recently, we have reported on the development of a Cerium surface treatment that improves the oxidation behavior of a variety alloys, including Crofer 22APU [1-5]. Initial results indicated that the treatment may improve the performance of Crofer 22APU for SOFC application by: (i) retarding scale growth resulting in a thinner oxide scale; and (ii) suppressing the formation of a deleterious continuous SiO2 layer that can form at the metal-oxide scale interface in materials with high residual Si content [5]. Crofer 22 APU contains Fe-22Cr-0.5Mn-0.1Ti (weight percent). Depending on current market prices and the purity of raw materials utilized for ingot production, Cr can contribute upwards of 90 percent of the raw materials cost. The present research was undertaken to determine the influence of Cr content and minor element additions, especially Ti, on the effectiveness of the Ce surface treatment. Particular emphasis is placed on the behavior of low Cr alloys
Recommended from our members
Microchannel devices
The fabrication of stainless steel microchannel heat exchangers was examined through microlamination, the process of diffusion bonding precision machined metallic foils. The influence of diffusion bonding parameters, as well as the device geometry on the strength of the bond between the foils and embedded channel integrity, was investigated. During diffusion bonding, high temperatures and/or pressures result in well bonded foils, but these conditions cause the embedded channels to deform, which will degrade the efficiency of fluid flow through the channels. Alternatively, low temperatures and/or pressures result in undeformed channels but weakly bonded foils. This causes failure of the device due to fluid leakage. Thus, a processing envelope exists for producing a sound device with no fluid leakage and no degradation of fluid flow properties. The theoretical limit on aspect ratio within two-fluid counter-flow microchannel heat exchangers was also investigated. A counter-flow device is comprised of alternating layers of microchannels, which allow the two fluids to flow in opposite directions separated by fins. A theoretical model for interpreting the span of the fin as a function of the fin thickness was established. The model was verified experimentally by fabricating specimens to simulate the counter-flow device. The results of these investigations were used to aid in the design and processing of prototype microchannel devices
Recommended from our members
Development of low coefficient of thermal expansion (CTE) nickel alloys for potential use as interconnects in SOFC
This paper deals with the development of low coefficient of thermal expansion (CTE) nickel-base superalloys for potential use as interconnects for SOFC. Ni-Mo-Cr alloys were formulated with CTE on the order of 12.5 to 13.5 x10-6/°C. The alloys were vacuum induction melted and reduced to sheet via a combination of hot and cold working. Dilatometry was used to measure CTE of the alloys. Oxidation behavior of the alloys at 800°C in dry and moist air is reported. The results are compared to results for Haynes 230 (a commercial Ni-base superalloy) and for Crofer 22APU (a commercial ferritic stainless steel designed specifically for use as an SOFC interconnect)
Recommended from our members
High temperature oxidation resistance of welded ferritic, austenitic and nickel alloys for balance of plant (BOP) in solid oxide fuel cell (SOFC) systems
Recommended from our members
Microstructural Stability and Oxidation Resistance of 9-12 Chromium Steels at Elevated Temperatures
Various martensitic 9-12 Cr steels are utilized currently in fossil fuel powered energy plants for their good elevated temperature properties such as creep strength, steam side oxidation resistance, fire side corrosion resistance, and thermal fatigue resistance. Need for further improvements on the properties of 9-12 Cr steels for higher temperature (>600oC) use is driven by the environmental concerns (i.e., improve efficiency to reduce emissions and fossil fuel consumption). In this paper, we will discuss the results of the research done to explore new subsitutional solute solution and precipitate hardening mechanisms for improved strength of 9-12 Cr martensitic steels. Stability of the phases present in the steels will be evaluated for various temperature and time exposures. A comparison of microstructural properties of the experimental steels and commercial steels will also be presented. The influence of a Ce surface treatment on oxidation behavior of a commercial (P91) and several experimental steels containing 9 to 12 weight percent Cr was examined at 650ºC in flowing dry and moist air. The oxidation behavior of all the alloys without the Ce modification was significantly degraded by the presence of moisture in the air during testing. For instance the weight gain for P91 was two orders of magnitude greater in moist air than in dry air. This was accompanied by a change in oxide scale from the formation of Cr-based scales in dry air to the formation of Fe-based scales in moist air. The Ce surface treatment was very effective in improving the oxidation resistance of the experimental steels in both moist and dry air. For instance, after exposure to moist air at 650ºC for 2000 hours, an experimental alloy with the cerium surface modification had a weight gain three orders of magnitude lower than the alloy without the Ce modification and two orders of magnitude lower than P91. The Ce surface treatment suppressed the formation of Fe-based scales and promoted the formation of more protective Cr-based scales. However, the Ce surface treatment was not effective in improving the resistance of P91. The results are discussed in terms of synergistic effects of constituent alloying elements
Recommended from our members
An update on field test results for an engineered refractory for slagging gasifiers
The widespread commercial adaptation of slagging gasifier technology to produce power, fuel, and/or chemicals from coal will depend in large measure on the technology’s ability to prove itself both economic and reliable. Improvements in gasifier reliability, availability, and maintainability will in part depend on the development of improved performance structural materials with longer service life in this application. Current generation refractory materials used to line the air-cooled, slagging gasifier vessel, and contain the gasification reaction, often last no more than three to 18 months in commercial applications. The downtime required for tear-out and replacement of these critical materials contributes to gasifier on-line availabilities that fall short of targeted goals. In this talk we will discuss the development of an improved refractory material engineered by the NETL for longer service life in this application, and provide an update on recent field test results
- …