Albany Research Ce

Solutions that make the Nation's energy systems safe, efficient

High Temperature Oxidation Resistance of Welded Ferritic, Austenitic and Nickel Alloys for Balance of Plant (BOP) In Solid Oxide Fuel Cell (SOFC) Systems

R. D. Wilson, J. A. Hawk*, and D. E. Alman Materials Performance Division Albany Research Center Albany, Oregon 97321 www.alrc.doe.gov

* Present Address: GE Energy, Schenectady, NY

MS&7

15

Outline

- Objective and Research Approach
- Materials
- GTAW Welding conditions
- Results and Analysis
- Conclusions

High Temp Materials Welding

MS&T '05

Objective

- Develop low cost 10 KW SOFC stationary power system.
 - Balance of plant Heat Exchangers (HE) cost reduction from \$15,000 to \$1,500.
 - Develop models to accurately predict the temperature in SOFC heat exchangers.
 - Select materials and manufacturing processes.
 - Use modeling to predict weld filler materials for the dissimilar metal joints.
 - Build and test heat exchangers to confirm model.

High Temp Materials Welding

MS&T '05

Research Approach

- Weld dissimilar metal materials without filler metal using GTAW.
- Heat the weld joints in air to 800°C for 100 hr, 500 hr, 1,000 hr and 2,000hr.
- Determine cracking modes
- Hardness across the welds.
- Diffusion of alloy elements over time.
- Metallographic examination.

High Temp Materials Welding

MS&T '05

Materials used in the welding experiments

	Ni	Cr	Fe	С	Ti	Nb+Ta	Мо	Mn
IN 625	64	22	0	0.1	0.4	4	9	0.5
IN 600	75.4	15	7	0.1	0	2	0	0.5
409 SS	0	11	87.4	0.04	0.75	0	0	0.75
321 SS	11	18	68.5	0.08	0.4	0	0	2
347 SS	12	18	68.9	0.08	0	0.8	0	2

compositions in weight percent

High Temp Materials Welding

Albany Research Center

MS&T '05

Welding Conditions

- GTAW using a horizontal welding track.
- Samples 1in. x 6 in. x 1/4 in.
- Welded side by side.
- One welding pass on top and bottom.
- 13 volts and 132 amps.
- Welding speed 0.4 in per minute.

High Temp Materials Welding

MS&T '05

High Temp Materials Welding

Albany Research Center

MS&T '05

Welding Results

- Solidification cracking and weld root cracking observed in all joints between all the stainless and the superalloys.
- Lack of full penetration was observed in all welds.
- No cracking was observed in the heat affected zone.

High Temp Materials Welding

MS&T '05

Weld Cracking

- 321 SS-INC625
- 321 SS-INC600
- INC625-409SS
- 409 SS-INC600
- INC600-INC625
- 321SS-409SS
- 347SS-409SS
- INC600-347SS
- INC625-347SS
- 321SS-347SS

centerline centerline centerline, crater centerline centerline, crater no cracking no cracking centerline, crater centerline, crater no cracking

High Temp Materials Welding

MS&T '05

Chemical Analysis after 800°C Heat Treatment

- SEM chemical analysis was used to determine the composition across the welded joints for Cr, Ni, Fe, and Mn.
- Changes in the composition across the welds were not observed with SEM as a function of time up to 2000 hours.

High Temp Materials Welding

MS&T '05

Hardness Results

		Hv	Hvσ
•	321 SS-INC625	171-226	24
•	321 SS-INC600	171-174	34.6
•	INC625-409SS	226-169	20.4
•	409 SS-INC600	174-169	23.0
•	INC600-INC625	174-226	40.2
•	321SS-409SS	171-169	14.6
•	347SS-409SS	163-169	17.0
•	INC600-347SS	174-163	50.2
•	INC625-347SS	226-163	55.0
•	321SS-347SS	171-163	17.0

High Temp Materials Welding

MS&T '05

Albany Research Center

Conclusions

- Autogenous GTAW welds in several stainless steels did not crack even after heat treatment at 800°C for 2000 hours.
- Weld cracking was observed in all the joints with superalloys.
- Elemental diffusion was not observed in the welds in samples heated to 800°C for 2000 hours.
- Vickers hardness measurements across the welds did not change in samples heated to 800°C for 2000 hours.

High Temp Materials Welding

MS&T '05

