NETL-TPR-1799

National Energy Technology Laboratory

The Performance of Ce Surface Treated Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnects

Paul Jablonski and David Alman

National Energy Technology Laboratory

Office of Fossil Energy

Reactive Element (RE) Effect

- Well known that the addition of small amounts of RE (Ce, La, Y, etc) improves oxidation resistance
- Characteristics
 - Reduction in the oxidation rate
 - Change in scale growth mechanisms
 - cation transport \rightarrow anion transport
 - Modification of scale microstructure
 - large columnar grains \rightarrow small equiaxial grains
 - > Stabilize Cr_2O_3 scales at lower Cr levels

Improvement in scale adhesion

Alloy	Fe	Cr	Mn	Si	Ti	AI	La
Crofer 22APU	Bal	22.0	0.5		0.08		0.06 La
ZMG232	Bal	22.0	minor:	Mn, Ni,	Zr, La		

RE Additions

• Melt addition

- + Elements added during ingot production (single manufacturing step)
- Difficulty in melting (react with crucibles)
- Surface concentration limited by solubility and diffusivity

• Surface treatments

- + Rare Earth concentrated where needed (at surface)
- + Applied to any alloy
- (\$) "Extra" manufacturing step.
- ? Long term effectiveness (as with any coating or surface treatment)

RE Treatment

RE Added to the Metal Surface Prior to Testing

¹ Patent Applied for.

RE is Incorporated into the Outer Surface Creating a Slow Growing Oxide Scale

Effect of RE on Oxidation

Effect of RE on Oxidation

Post Surface Treatment/Prior to Testing (CeO₂-NETL)

• The surface treatment pre-oxides the surface.

Post Surface Treatment/Prior to Testing (CeO₂-NETL)

• The surface treatment pre-oxides the surface. Ce-rich oxide forms at the gas-substrate surface. A Cr-Mn oxide forms underneath the Ce-rich oxide.

Crofer+Ce (NETL)

Oxide Scale Formation

Total Oxidation NETL Ce-Surface Treatment

NETL Ce Surface Treatment Applied to Commercial and Experimental Ferritic Alloys

Time (hrs)

		Crofer	409	430	446	F6	F9	F11
	Cr	22	12	17	26	22	12	22
	Si (Ti)	(0.1)	0.5	0.5	0.5	(0.3)	(1)	(1)
TL	•							

Influence of Surface Treatment on Oxidation

800°C-2000h-Air+3%H₂O

thinner oxide scales with surface treatment

Detailed scale microstructures can be found in D.E. Alman and P.D. Jablonski, "Effect of Minor Elements and a Cerium Surface Treatment on the Oxidation Behavior of an Fe-22Cr-0.5Mn (Crofer 22APU) Ferritic Stainless Steel, *International Journal of Hydrogen Energy*, accepted for publication (2006), currently available on line at <u>www.sciencedirect.com</u>.

NETL Ce Surface Treatment

- Slows scale growth
- Minimizes internal oxidation.
 - Indicates slow oxygen diffusion through the scale.
- Ce at surface modifies initial stages of transient oxidation → alters the subsequent growth of the scale→ enhanced oxidation resistance.
 - formation of $CeCrO_3$ type oxide during transient oxidation.
 - Nucleates M₃O₄ phase during NETL Ce treatment
- Why slower scale growth?
 - Scale microstructure is changed
 - (high diffusivity columnar to low diffusivity equiaxed)
 - Ce in oxide changes diffusion through oxide.

Application of NETL Ce Surface Treatment to SOFC Interconnect

- ASR Test Results
- Button Cell Test Results

Electrical Performance

Samples pre-oxidized at 800°C for 100 hours prior to testing

Electrical Performance

ASR Measurements performed by PNNL (Z.G. Yang) 800°C, air; LSM cathode//LSM contact//interconnect

SOFC TEST APPARATUS

LABORATORY SCALE SOFC TESTING: OPERATING CONDITIONS

- Heated to 800°C (2hrs)
 - $>N_2$ on anode side: air+3%H₂O on cathode side

• 800°C (2hrs)

>10% H_2 /90% N_2 mixture on anode side

Cell Operation

➢ Fuel: 97% H₂/3%H₂O at 400 cm³/min

≻Oxidant: air+3%H₂O at 1000 cm³/min

➤Constant voltage: 0.7V

≻Periodic voltage sweeps: 1.1V to 0.V

Cathode Current Collector Surface Condition

≻Untreated condition: polished (1 µm diamond)

Ce-treated condition: cleaned with scotch-brite® pad in water

CELL PERFORMANCE

0.7V/800°C; Fuel: H₂+3%H₂O; Oxidant: Air +3% H₂O LSM Cathode/Fe-22Cr-0.5Mn Interconnect 0.30 Power Density (W/cm²) Crofer 0.25 0.20 0.15 \mathbb{A} Voltage sweep 0.10 20 40 60 80 100 120 0 Time (hrs)

CELL PERFORMANCE

0.7V/800°C; Fuel: H₂+3%H₂O; Oxidant: Air +3% H₂O LSM Cathode/Fe-22Cr-0.5Mn Interconnect 0.30 Power Density (W/cm²) Crofer 0.25 F5+Ce initial oxide on surface 0.20 0.15 Cr poisoning Crofer+Ce 0.10 20 60 40 80 100 120 0 Time (hrs)

ANALYSIS OF Cr IN CATHODE

COMPO 15.0kV

X3,700

1µm

Summary

- RE surface treatment is more effective than alloy additions alone.
- RE surface treatments are effective in reducing oxidation rate.
 - Applied to ferritic stainless steels for interconnect application (12-26 Cr alloys).
- ASR measurements indicate that slower scale growth will enhance SOFC performance.
- Improved button cell performance with NETL Ce surface treatment.

Acknowledgements

- Gordon Xia and Z. Gary Yang from PNNL for performing the ASR measurements.
- Chris Johnson from NETL-Morgantown for assistance with initial SOFC button cell testing.

