National Energy Technology Laboratory

Influence of a Cerium Surface Treatment on the Oxidation Behavior of Commercial Fe- and Ni- Base Alloys

David E. Alman and Paul D. Jablonski

1450 Queen Ave., S.W. Albany, OR 97321 www.netl.doe.gov

High Temperature Degradation of Fe-, Ni- and Co- Based Alloys: Alloying Element and Corrosive Environments MS&T06, Cincinnati, Ohio, October 17, 2006

Acknowledgements

- Gordon Holcomb, Omer Doğan, Karol Schrems (assistance and discussions)
- Mike Hayes (assistance in surface treatment)
- Dan Davis, Ed Argetsinger (experimental setup)
- Al Hunt, Shain Thompson, Richard Gregory (sample preparation)
- Paul Danielson (metallography)
- Keith Collins and Steve Matthes (SEM)
- Marisa Arnold (ESCA, XRF, oxidation experiments)
- Richard Chinn and Dave Smith (XRD)

Motivation for Research

- Increasing efficiency of power generation requires system to operate at higher temperatures, pressures and in hostile environments (IGCC, SOFC, USC).
- COST EFFECTIVE METALLIC ALLOYS THAT CAN MEET PERFORMACE REQUIREMENTS (I.E., CREEP & CORROSION RESISTANCE ARE A KEY TO THE DEVELOPMENT OF ADVANCED POWER SYSTEMS.
- Strength and creep resistance is often obtained at the expense of corrosion resistance.
- NEED TO DEVELOP METHODOLOGIES TO IMPROVE HIGH TEMPERATURE COROSION RESISTANCE.
 - Alloying additions
 - Coatings

SURFACE TREATMENTS

Improving Oxidation Resistance with Reactive (Rare Earth) Elements

 Well established small amounts rare earth additions improve oxidation resistance of a variety of metallic alloys

➤ Ce, La, Y, etc.

• Characteristics

- Slow scale growth
- > Stabilize Cr_2O_3 scales at lower Cr levels
 - Lower Cr levels → lower alloy cost (especially for ferrous alloys)
- Prevent oxide scale spalling

Improving Oxidation Resistance with Rare Earths

• Melt addition

- + Elements added during ingot production (single manufacturing step)
- -Difficulty in melting (react with crucibles)
- Surface concentration limited by solubility and diffusivity

Surface treatments

- + Rare Earth concentrated where needed (at surface and have most benefit)
- "Extra" manufacturing step.
- ? Long term effectiveness (as with any coating or surface treatment)

Research Goal

- Investigate rare earth surface treatment for improving oxidation resistance of alloys for FE applications.
- Two different surface treatments investigated
 - -Developed at NETL
 - Similar to pack cementation: coated with a powder mixture containing CeO₂ or CeN and halide activator followed by heating in a controlled atmosphere (900°C-12 hrs), after which residual "pack" coating is washed off the surface.
 - Patent application filed with USPTO in September, 2005.
 - Applied to over 50 alloys.
 - –Described in a paper by P.Y. Hou and J. Stringer (H/S)
 - J. Electrochem Soc., Vol 134, No. 7, July 1987, pp. 1836-1849
 - Coupons heated to 200°C were coated with a cerium-nitrate slurry (10w/o nitrate adjusted with HNO₃ to pH=2), followed heating in air at 400°C to decompose to CeO₂

Oxidation Experiments • Coupons

- 25.4 x12.5 x thickness
- placed in Al₂O₃ crucible (to collect any oxide spall)
- Polished through 600 grit surface finish

Oxidation testing

- in dry air
- air+3%H₂O (bubbling dry air through two ~ 1m water columns)

"pseudo-cyclical"

 coupons placed in pre-heated furnace; after pre-determined time interval coupons removed and weight change recorded; coupons were then replaced in furnace for next cycle

Crofer 22APU+Ce Surface Treatment

Crofer 22APU is a "commercial" Fe-22Cr-0.5Mn ferritic steel developed for SOFC interconnect application at the Juelich Research Center and marketed by ThyssenKrupp.

Commercial Alloys Cerium Surface Treated

- IN100, MAR-M 247
- Haynes 230, IN625
- Haynes 242
- IN718, IN600
- 316, 321, 347
- AL-20-25+Nb
- MA965
- 446, EBrite
- Crofer22APU
- 441,430
- 409
- P91
- SAVE 12

Ni-base alloys

austenitic steels

ferritic steels

ferritic/martensitic steels

Alloy Compositions

Alloy	Nominal Composition	Alloy Class
IN625	Ni-22Cr-10Mo-0.5Mn-4(Nb+Ta)	Nickel
AI-20-25+Nb	Fe-20Cr-25Ni-1.5Mn-1.5Mo-0.3Nb	Austenitic
IN600	Ni-18Cr-8Fe-1Mn	Nickel
347	Fe-18Cr-10Ni-2Mn-(Nb+Ta)10x(C)	Austenitic
321	Fe-18Cr-10Ni-2Mn-(Ti)5x(C+N)	Austenitic
441	Fe-18Cr-1Mn-0.5Ti-(0.3+9xC)Nb	Ferritic

Chemical Composition (wt%, by XRF)

	Fe	Ni	Мо	Cu	Mn	Cr	Si	ΑΙ
Type321	68.92	10.18	0.13	0.16	1.63	17.49	0.55	0.075
Type347	70.57	8.99	0.20	0.16	1.17	17.49	0.40	<0.010
IN600	9.48	71.94	0.15	0.19	0.92	15.99	0.21	0.24
IN625	4.15	61.75	8.76	0.055	0.056	20.92	0.17	0.13

	Та	W	Со	V	Nb	Ti	С
Type321	0.044	<0.010	0.030	0.020	0.001	0.69	0.08
Type347	0.034	<0.010	0.049	0.091	0.77	0.010	0.08
IN600	0.40	0.037	<0.010	0.011	0.18	0.26	0.01
IN625	0.34	0.032	<0.010	0.026	3.37	0.25	0.01

D.E. Alman and P.D. Jablonski, NETL, MS&T06, October 17, 2006

Oxidation of Type 347 HFG

D.E. Alman and P.D. Jablonski, NETL, MS&T06, October 17, 2006

Influence of Moisture on the Oxidation behavior of TYPE 347

D.E. Alman and P.D. Jablonski, NETL, MS&T06, October 17, 2006

Scale Formation During Oxidation of Type 347

	800°C	800°C	800°C
	Dry Air	Moist Air	Moist Air
	600 hrs	600 hrs	2000 hrs
347	Cr _{1.3} Fe _{0.7} O ₃ Mn _{1.5} Cr _{1.5} O ₄	FeFe ₂ O ₄ (magnetite) Cr _{1.3} Fe _{0.7} O ₃ $Fe_2O_3^*$ NiCr ₂ O ₄ *	$FeCr_{2}O_{4}$ $Cr_{2}O_{3}$ $Fe_{2}O_{3}^{*}$ $NiCr_{2}O_{4}^{*}$
347+Ce	Cr ₂ O ₃	Cr ₂ O ₃	Cr ₂ O ₃
	Mn _{1.5} Cr _{1.5} O ₄	Mn _{1.5} Cr _{1.5} O ₄	MnCr ₂ O ₄
	CeO ₂	CeO ₂	CeO ₂

* found in spall

Scale Morphology

Compositions in at% determined by WDX analysis

Scale Morphology

Compositions in at% determined by WDX analysis

18Cr Alloys

800°C-Air+3%H₂O-2000hrs

Compositions in at% determined by WDX analysis

D.E. Alman and P.D. Jablonski, NETL, MS&T06, October 17, 2006

High Temperature Alloys

D.E. Alman and P.D. Jablonski, NETL, MS&T06, October 17, 2006

IN625:800°C-Air+3%H₂O-2000hrs

D.E. Alman and P.D. Jablonski, NETL, MS&T06, October 17, 2006

IN625:800°C-Air+3%H₂O-2000hrs

IN625

IN625+Ce

Compositions in at% determined by WDX

Base Alloy Behavior

- 347/321 (18Cr-10Ni) austenitic alloys → oxide scale spalled → Fe₂O₃ formation
- AL-20Cr-25Nb+Nb austenitic alloy \rightarrow did not spall
- Ferritic alloy (441) and Ni alloy (IN600) → did not spall → Cr₂O₃ formation
- ? WHY?
- Chemical Potentials and Diffusivities

Comparison of Chemical Potential

Note that the chemical potential for Fe and Cr are about the same in 347ss while in IN600 Cr has a much higher chemical potential.

D.E. Alman and P.D. Jablonski, NETL, MS&T06, October 17, 2006

Comparison of Chemical Potential

Note that the chemical potential for Fe and Cr are about the same in 347ss while in AL2025 Cr has a much higher chemical potential.

D.E. Alman and P.D. Jablonski, NETL, MS&T06, October 17, 2006

Comparison of Chemical Potential

Similar Cr (18 w/o) but different crystal structures

potential for Fe and Cr are about the same in 347ss and in 441ss. However, recall that the ferritic structure (BCC) allows for much greater diffusion rate thus providing a protective chrome rich layer.

Here we see that the chemical

D.E. Alman and P.D. Jablonski, NETL, MS&T06, October 17, 2006

Cr Diffusivities In BCC vs. FCC Structures

Cr Diffusivities In BCC vs. FCC Structures

D.E. Alman and P.D. Jablonski, NETL, MS&T06, October 17, 2006

Influence of Thermal Portion of Surface Treatment

RE Alloying Additions vs. Surface Treatment

Summary/Conclusion

- Base Alloy Behavior explained in terms of chemical potentials and diffusivities.
- Ce surface treatment \rightarrow suppressed the formation of Fe₂O₃ formation in 347/321 \rightarrow promoted formation of adherent Cr₂O₃ scales
- Ce surface treatment retard Cr₂O₃ growth rate and internal oxidation
- ? Why?
- ? CeO₂ surface particles that effect oxide nucleation \rightarrow . promotes nucleation of Cr₂O₃ scales?????
- ? Chemical potentials of minor constituents are increased (such as Ti)→ slows subsequent diffusion????

Current and Future Work

- LONG TERM EXPOSURES
 ACCELERATED TESTS ON CHROMIA FORMERS
- BETTER CHARACTERIZATION OF SCALES
- MECHANICAL PROPERTIES AND CREEP BEHAVIOR

Room Temp	σ _{υτs} (MPa)	σ _{γs} (MPa)	Elongation (%)
347	662	287	52
347+Ce	649	257	47

Courtesy of Karol K. Schrems, NETL, 2006

