977 research outputs found

    A Quantum Electrodynamical Foundation for Molecular Photonics

    Get PDF
    In this review the authors describe some of the advances in the quantum electrodynamical formulation of theory for molecular photonics. Earlier work has been extended and reformulated for application to real dispersive media—as reflected in the new treatment of refractive, dissipative, and resonance properties. Applications of the new theory have revealed new quantum optical features in two quite different aspects of the familiar process of second harmonic generation, one operating through local coherence within small particles and the other, a coherence between the quantum amplitudes for fundamental and harmonic excitation. Where the salient experiments have been performed, they exactly match the theoretical predictions

    Process for the preparation of polycarboranylphosphazenes

    Get PDF
    A process for the preparation of polycarboranylphosphazenes is described. Polydihalophosphazenes are allowed to react at ambient temperatures for at least one hour with a lithium carborane in a suitable inert solvent. The remaining chlorine substituents of the carboranyl polyphosphazene are then replaced with aryloxy or alkoxy groups to enhance moisture resistance. The polymers give a high char yield when exposed to extreme heat and flame and can be used as insulation

    Carboranylcyclotriphosphazenes and their polymers

    Get PDF
    Carboranyl-substituted polyphosphazenes are prepared by heat polymerizing a carboranyl halocyclophosphazene at 250 C for about 120 hours in the absence of oxygen and moisture. The cyclophosphazene is obtained by allowing a lithium carborane, e.g., the reaction product of methyl-o-carborane with n-butyllithium in ethyl ether, to react with e.g., hexachlorocyclotriphosphazene at ambient temperatures and in anhydrous conditions. For greater stability in the presence of moisture, the chlorine substituents of the polymer are then replaced by aryloxy or alkoxy groups, such as CF3CH2O. The new substantially inorganic polymers are thermally stable materials which produce a high char yield when exposed to extreme temperatures, and can thus serve to insulate less heat and fire resistant substances

    Bimolecular photophysics

    Get PDF

    Quantum Time and Spatial Localization: An Analysis of the Hegerfeldt Paradox

    Full text link
    Two related problems in relativistic quantum mechanics, the apparent superluminal propagation of initially localized particles and dependence of spatial localization on the motion of the observer, are analyzed in the context of Dirac's theory of constraints. A parametrization invariant formulation is obtained by introducing time and energy operators for the relativistic particle and then treating the Klein-Gordon equation as a constraint. The standard, physical Hilbert space is recovered, via integration over proper time, from an augmented Hilbert space wherein time and energy are dynamical variables. It is shown that the Newton-Wigner position operator, being in this description a constant of motion, acts on states in the augmented space. States with strictly positive energy are non-local in time; consequently, position measurements receive contributions from states representing the particle's position at many times. Apparent superluminal propagation is explained by noting that, as the particle is potentially in the past (or future) of the assumed initial place and time of localization, it has time to propagate to distant regions without exceeding the speed of light. An inequality is proven showing the Hegerfeldt paradox to be completely accounted for by the hypotheses of subluminal propagation from a set of initial space-time points determined by the quantum time distribution arising from the positivity of the system's energy. Spatial localization can nevertheless occur through quantum interference between states representing the particle at different times. The non-locality of the same system to a moving observer is due to Lorentz rotation of spatial axes out of the interference minimum.Comment: This paper is identical to the version appearing in J. Math. Phys. 41; 6093 (Sept. 2000). The published version will be found at http://ojps.aip.org/jmp/. The paper (40 page PDF file) has been completely revised since the last posting to this archiv

    Untersuchungen zur Verbreitung und Biologie der Cephalopoden im östlichen Weddellmeer

    Get PDF

    Cephalopod diversity and ecology

    Get PDF

    Laser-induced forces between carbon nanotubes

    Get PDF
    Carbon nanotubes are the focus of intense research interest because of their unique properties and applications potential. We present a study based on quantum electrodynamics concerning the optical force between a pair of nanotubes under laser irradiance. To identify separate effects associated with the pair orientation and laser beam geometry, two different systems are analyzed, For each, an analytical expression for the laser-induced optical force is determined, and the corresponding magnitude is estimated. © 2005 Optical Society of America

    Quantum times of arrival for multiparticle states

    Get PDF
    Using the concept of crossing state and the formalism of second quantization, we propose a prescription for computing the density of arrivals of particles for multiparticle states, both in the free and the interacting case. The densities thus computed are positive, covariant in time for time independent hamiltonians, normalized to the total number of arrivals, and related to the flux. We investigate the behaviour of this prescriptions for bosons and fermions, finding boson enhancement and fermion depletion of arrivals.Comment: 10 a4 pages, 5 inlined figure
    corecore