2,142 research outputs found

    On Hamilton-Jacobi Approaches to State Reconstruction for Dynamic Systems

    Get PDF
    We investigate the use of Hamilton-Jacobi approaches for the purpose of state reconstruction of dynamic systems. First, the classical formulation based on the minimization of an estimation functional is analyzed. Second, the structure of the resulting estimator is taken into account to study the global stability properties of the estimation error by relying on the notion of input-to-state stability. A condition based on the satisfaction of a Hamilton-Jacobi inequality is proposed to construct estimators with input-to-state stable dynamics of the estimation error, where the disturbances affecting such dynamics are regarded as input. Third, the so-developed general framework is applied to the special case of high-gain observers for a class of nonlinear systems

    Extracorporeal CO2 removal in hypercapnic patients who fail noni nvasive ventialtion and refuse endotracheal intubation. a case series

    Get PDF
    Noninvasive ventilation (NIV) represents the standard of care for patients with exacerbation of chronic obstructive pulmonary disease. However, NIV fails in almost 40% of the most severe forms of acute hypercapnic respiratory failure and patients must undergo endotracheal intubation and invasive ventilation. Such transition from NIV to invasive ventilation is associated to increased mortality. Under these circumstances, patients may express a clear intention not to be intubated

    Hysteresis-based switching observers for linear systems using quadratic boundedness

    Get PDF
    Switched-gain observers are investigated for the purpose of estimating the state of linear systems affected by bounded noises. Under mild assumptions, hybrid observers with switching gains are proposed and provided with stability analysis based on quadratic boundedness for the estimation error. Such observers are designed by solving optimization problems aimed at minimizing upper bounds on the estimation error in such a way as to get the smallest invariant set. The effectiveness of the proposed approach is evaluated with some numerical case studies

    Effects of increased CO2 levels on monsoons

    Get PDF
    Increased atmospheric carbon dioxide concentration provided warmer atmospheric temperature and higher atmospheric water vapor content, but not necessarily more precipitation. A set of experiments performed with a state-of-the-art coupled general circulation model forced with increased atmospheric CO2 concentration (2, 4 and 16 times the present-day mean value) were analyzed and compared with a control experiment to evaluate the effect of increased CO2 levels on monsoons. Generally, the monsoon precipitation responses to CO2 forcing are largest if extreme concentrations of carbon dioxide are used, but they are not necessarly proportional to the forcing applied. In fact, despite a common response in terms of an atmospheric water vapor increase to the atmospheric warming, two out of the six monsoons studied simulate less or equal summer mean precipitation in the 16xCO2 experiment compared to the intermediate sensitivity experiments. The precipitation differences between CO2 sensitivity experiments and CTRL have been investigated specifying the contribution of thermodynamic and purely dynamic processes. As a general rule, the differences depending on the atmospheric moisture content changes (thermodynamic component) are large and positive, and they tend to be damped by the dynamic component associated with the changes in the vertical velocity. However, differences are observed among monsoons in terms of the role played by other terms (like moisture advection and evaporation) in shaping the precipitation changes in warmer climates. The precipitation increase, even if weak, occurs despite a weakening of the mean circulation in the monsoon regions(‘‘precipitation-wind paradox’’). In particular, the tropical east-west Walker circulation is reduced, as found from velocity potential analysis. The meridional component of the monsoon circulation is changed as well, with larger (smaller) meridional (vertical) scales

    Model-Based Fault Detection and Estimation for Linear Time Invariant and Piecewise Affine Systems by Using Quadratic Boundedness

    Get PDF
    Quadratic boundedness is a notion of stability that is adopted to investigate the design of observers for dynamic systems subject to bounded disturbances. We will show how to exploit such observers for the purpose of fault detection. Toward this end, first of all we present the naive application of quadratic boundedness to construct state observers for linear time-invariant systems with state augmentation, i.e., where additional variables may be introduced to account for the occurrence of a fault. Then a Luenberger observer is designed to estimate the augmented state variable of the system in such a way to detect the fault by using a convenient threshold selection. Finally, such an approach is extended to piecewise affine systems by presenting a hybrid Luenberger observer and its related design based on quadratic boundedness. The design of all the observers for both linear time-invariant and piecewise affine systems can be done by using linear matrix inequalities. Simulation results are provided to show the effectiveness of the proposed approach

    Effects of Land-Surface-Vegetation on theboreal summer surface climate of a GCM

    Get PDF
    A land surface model (LSM) has been included in the ECMWF Hamburg version 4 (ECHAM4) atmospheric general circulation model (AGCM). The LSM is an early version of the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) and it replaces the simple land surface scheme previously included in ECHAM4. The purpose of this paper is to document how a more exhaustive consideration of the land surface–vegetation processes affects the simulated boreal summer surface climate. To investigate the impacts on the simulated climate, different sets of Atmospheric Model Intercomparison Project (AMIP)-type simulations have been performed with ECHAM4 alone and with the AGCM coupled with ORCHIDEE. Furthermore, to assess the effects of the increase in horizontal resolution the coupling of ECHAM4 with the LSM has been implemented at different horizontal resolutions. The analysis reveals that the LSM has large effects on the simulated boreal summer surface climate of the atmospheric model. Considerable impacts are found in the surface energy balance due to changes in the surface latent heat fluxes over tropical and midlatitude areas covered with vegetation. Rainfall and atmospheric circulation are substantially affected by these changes. In particular, increased precipitation is found over evergreen and summergreen vegetated areas. Because of the socioeconomical relevance, particular attention has been devoted to the Indian summer monsoon (ISM) region. The results of this study indicate that precipitation over the Indian subcontinent is better simulated with the coupled ECHAM4–ORCHIDEE model compared to the atmospheric model alone

    Luenberger observers for switching discrete-time linear systems

    Get PDF
    State estimation is considered for a class of switching discrete-time linear systems. The switching is assumed to be unknown among the various system modes associated with different known matrices. The proposed scheme relies on the combination of the estimation of the system mode with the application of a Luenberger-like observer whose gain is a function of the estimated mode. In the absence of noises, the estimate of the mode can be chosen among the ones that are consistent with the measurements and the stability of the estimation error is ensured under suitable conditions on the observer gains. Such conditions can be expressed by means of linear matrix inequalities (LMIs). The presence of bounded disturbances is also taken explicitly into consideration. In this situation, a novel method based on a minimum-distance criterion is proposed in order to estimate the system mode. Also in this case the error of the resulting estimator is proved to be exponentially bounded

    Effects of increased CO2 levels on monsoons

    Get PDF
    Increased atmospheric carbon dioxide concentration provided warmer atmospheric temperature and higher atmospheric water vapor content, but not necessarily more precipitation. A set of experiments performed with a state-of-the-art coupled general circulation model forced with increased atmospheric CO2 concentration (2, 4 and 16 times the present-day mean value) were analyzed and compared with a control experiment to evaluate the effect of increased CO2 levels on monsoons. Generally, the monsoon precipitation responses to CO2 forcing are largest if extreme concentrations of carbon dioxide are used, but they are not necessarly proportional to the forcing applied. In fact, despite a common response in terms of an atmospheric water vapor increase to the atmospheric warming, two out of the six monsoons studied simulate less or equal summer mean precipitation in the 16xCO2 experiment compared to the intermediate sensitivity experiments. The precipitation differences between CO2 sensitivity experiments and CTRL have been investigated specifying the contribution of thermodynamic and purely dynamic processes. As a general rule, the differences depending on the atmospheric moisture content changes (thermodynamic component) are large and positive, and they tend to be damped by the dynamic component associated with the changes in the vertical velocity. However, differences are observed among monsoons in terms of the role played by other terms (like moisture advection and evaporation) in shaping the precipitation changes in warmer climates. The precipitation increase, even if weak, occurs despite a weakening of the mean circulation in the monsoon regions (‘‘precipitation-wind paradox’’). In particular, the tropical east-west Walker circulation is reduced, as found from velocity potential analysis. The meridional component of the monsoon circulation is changed as well, with larger (smaller) meridional (vertical) scales
    • …
    corecore