151 research outputs found

    Dauerhaft digital : systematische Entwicklung und Implementation einer E-Learning-Strategie

    Get PDF
    E-Learning an Hochschulen hat längst den Status von Pilotprojekten hinter sich gelassen. Häufig jedoch fehlt eine Verstetigung auf institutioneller Ebene. In einem aufwendigen Prozess, der über mehrere Abstimmungszyklen alle Stakeholder involvierte, wurde an der School of Management and Law (SML) der ZHAW eine E-Learning-Strategie entwickelt und verabschiedet. Zentraler Entwicklungsbaustein war die Erstellung eines Morphologischen Kastens, der bei der Abstimmung über relevante Parameter und ihre Ausgestaltung zu einer kongruenten und systematischen Entscheidungsfindung beitrug. Für die Implementation der E-Learning-Strategie wurde das Analysemodell von Knoster herangezogen, um Schwierigkeiten und Widerstände zu antizipieren und geeignete Massnahmen abzuleiten

    Flexibilisierung von Studiengängen : Lernen im Zwischenraum von formellen und informellen Kontexten

    Get PDF
    Die School of Management and Law der ZHAW transformiert derzeit einen ganzen Studiengang in ein flexibilisiertes Lernformat. Die Studienform FLEX sieht vor, dass der Präsenzunterricht vor Ort um die Hälfte reduziert und durch dreiwöchige Online-Phasen ersetzt wird. Damit entsteht ein neuer Lernraum, der das formelle Lernen in informellen Kontexten stärkt. Der vorliegende Bericht beschreibt, wie die Transformation des Studienganges über alle 34 Module vollzogen und wie das Spannungsfeld zwischen informellen und formellen Kontext gestaltet wird

    Simulation and experimental study of rheological properties of CeO2 – water nanofluid

    Get PDF
    Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Metal oxide nanoparticles offer great merits over controlling rheological, thermal, chemical and physical properties of solutions. The effectiveness of a nanoparticle to modify the properties of a fluid depends on its diffusive properties with respect to the fluid. In this study, rheological properties of aqueous fluids (i.e. water) were enhanced with the addition of CeO2 nanoparticles. This study was characterized by the outcomes of simulation and experimental results of nanofluids. The movement of nanoparticles in the fluidic media was simulated by a large-scale molecular thermal dynamic program (i.e. LAMMPS). The COMPASS force field was employed with smoothed particle hydrodynamic potential (SPH) and discrete particle dynamics potential (DPD). However, this study develops the understanding of how the rheological properties are affected due to the addition of nanoparticles in a fluid and the way DPD and SPH can be used for accurately estimating the rheological properties with Brownian effect. The rheological results of the simulation were confirmed by the convergence of the stress autocorrelation function, whereas experimental properties were measured using a rheometer. These rheological values of simulation were obtained and agreed within 5 % of the experimental values; they were identified and treated with a number of iterations and experimental tests. The results of the experiment and simulation show that 10 % CeO2 nanoparticles dispersion in water has a viscosity of 2.0–3.3 mPasPeer reviewedFinal Published versio

    Large-scale transdisciplinary collaboration for adaptation research: Challenges and insights

    Get PDF
    An increasing number of research programs seek to support adaptation to climate change through the engagement of large-scale transdisciplinary networks that span countries and continents. While transdisciplinary research processes have been a topic of reflection, practice, and refinement for some time, these trends now mean that the global change research community needs to reflect and learn how to pursue collaborative research on a large scale. This paper shares insights from a seven-year climate change adaptation research program that supports collaboration between more than 450 researchers and practitioners across four consortia and 17 countries. The experience confirms the importance of attention to careful design for transdisciplinary collaboration, but also highlights that this alone is not enough. The success of well-designed transdisciplinary research processes is also strongly influenced by relational and systemic features of collaborative relationships. Relational features include interpersonal trust, mutual respect, and leadership styles, while systemic features include legal partnership agreements, power asymmetries between partners, and institutional values and cultures. In the new arena of large-scale collaborative science efforts, enablers of transdisciplinary collaboration include dedicated project coordinators, leaders at multiple levels, and the availability of small amounts of flexible funds to enable nimble responses to opportunities and unexpected collaborations

    Confidential Consortium Framework: Secure Multiparty Applications with Confidentiality, Integrity, and High Availability

    Full text link
    Confidentiality, integrity protection, and high availability, abbreviated to CIA, are essential properties for trustworthy data systems. The rise of cloud computing and the growing demand for multiparty applications however means that building modern CIA systems is more challenging than ever. In response, we present the Confidential Consortium Framework (CCF), a general-purpose foundation for developing secure stateful CIA applications. CCF combines centralized compute with decentralized trust, supporting deployment on untrusted cloud infrastructure and transparent governance by mutually untrusted parties. CCF leverages hardware-based trusted execution environments for remotely verifiable confidentiality and code integrity. This is coupled with state machine replication backed by an auditable immutable ledger for data integrity and high availability. CCF enables each service to bring its own application logic, custom multiparty governance model, and deployment scenario, decoupling the operators of nodes from the consortium that governs them. CCF is open-source and available now at https://github.com/microsoft/CCF.Comment: 16 pages, 9 figures. To appear in the Proceedings of the VLDB Endowment, Volume 1

    Hadronic properties of the S_{11}(1535) studied by electroproduction off the deuteron

    Get PDF
    Properties of excited baryonic states are investigated in the context of electroproduction of baryon resonances off the deuteron. In particular, the hadronic radii and the compositeness of baryon resonances are studied for kinematic situations in which their hadronic reinteraction is the dominant contribution. Specifically, we study the reaction d(e,eS11)Nd(e,e'S_{11})N at Q21GeV2Q^2\ge 1 GeV^2 for kinematics in which the produced hadronic state reinteracts predominantly with the spectator nucleon. A comparison of constituent quark model and effective chiral Lagrangian calculations of the S11S_{11} shows substantial sensitivity to the structure of the produced resonance.Comment: 24 pages, 5 figure

    Poly(Glycerol Adipate-co-ω-Pentadecalactone) Spray-Dried Microparticles as Sustained Release Carriers for Pulmonary Delivery

    Get PDF
    Purpose The aim of this work was to optimize biodegradable polyester poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL, microparticles as sustained release (SR) carriers for pulmonary drug delivery. Methods Microparticles were produced by spray drying directly from double emulsion with and without dispersibility enhancers ( L -arginine and L -leucine) (0.5–1.5%w/w) using sodium fluorescein (SF) as a model hydrophilic drug. Results Spray-dried microparticles without dispersibility enhancers exhibited aggregated powders leading to low fine particle fraction (%FPF) (28.79 ± 3.24), fine particle dose (FPD) (14.42 ± 1.57 μg), with a mass median aerodynamic diameter (MMAD) 2.86 ± 0.24 μm. However, L -leucine was significantly superior in enhancing the aerosolization performance ( L- arginine:%FPF 27.61 ± 4.49–26.57 ± 1.85; FPD 12.40 ± 0.99–19.54 ± 0.16 μg and MMAD 2.18 ± 0.35–2.98 ± 0.25 μm, L -leucine:%FPF 36.90 ± 3.6–43.38 ± 5.6; FPD 18.66 ± 2.90–21.58 ± 2.46 μg and MMAD 2.55 ± 0.03–3.68 ± 0.12 μm). Incorporating L -leucine (1.5%w/w) reduced the burst release (24.04 ± 3.87%) of SF compared to unmodified formulations (41.87 ± 2.46%), with both undergoing a square root of time (Higuchi’s pattern) dependent release. Comparing the toxicity profiles of PGA-co-PDL with L -leucine (1.5%w/w) (5 mg/ml) and poly(lactide-co-glycolide), (5 mg/ml) spray-dried microparticles in human bronchial epithelial 16HBE14o- cell lines, resulted in cell viability of 85.57 ± 5.44 and 60.66 ± 6.75%, respectively, after 72 h treatment. Conclusion The above data suggest that PGA-co-PDL may be a useful polymer for preparing SR microparticle carriers, together with dispersibility enhancers, for pulmonary delivery

    Finding Your Mate at a Cocktail Party: Frequency Separation Promotes Auditory Stream Segregation of Concurrent Voices in Multi-Species Frog Choruses

    Get PDF
    Vocal communication in crowded social environments is a difficult problem for both humans and nonhuman animals. Yet many important social behaviors require listeners to detect, recognize, and discriminate among signals in a complex acoustic milieu comprising the overlapping signals of multiple individuals, often of multiple species. Humans exploit a relatively small number of acoustic cues to segregate overlapping voices (as well as other mixtures of concurrent sounds, like polyphonic music). By comparison, we know little about how nonhuman animals are adapted to solve similar communication problems. One important cue enabling source segregation in human speech communication is that of frequency separation between concurrent voices: differences in frequency promote perceptual segregation of overlapping voices into separate “auditory streams” that can be followed through time. In this study, we show that frequency separation (ΔF) also enables frogs to segregate concurrent vocalizations, such as those routinely encountered in mixed-species breeding choruses. We presented female gray treefrogs (Hyla chrysoscelis) with a pulsed target signal (simulating an attractive conspecific call) in the presence of a continuous stream of distractor pulses (simulating an overlapping, unattractive heterospecific call). When the ΔF between target and distractor was small (e.g., ≤3 semitones), females exhibited low levels of responsiveness, indicating a failure to recognize the target as an attractive signal when the distractor had a similar frequency. Subjects became increasingly more responsive to the target, as indicated by shorter latencies for phonotaxis, as the ΔF between target and distractor increased (e.g., ΔF = 6–12 semitones). These results support the conclusion that gray treefrogs, like humans, can exploit frequency separation as a perceptual cue to segregate concurrent voices in noisy social environments. The ability of these frogs to segregate concurrent voices based on frequency separation may involve ancient hearing mechanisms for source segregation shared with humans and other vertebrates

    Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease

    Get PDF
    Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions
    corecore