9 research outputs found

    E-Teaching Materials as the Means to Improve Humanities Teaching Proficiency in the Context of Education Informatization

    Get PDF
    The aim of the article is to determine the specifics of the creation and methodology of the use of e-teaching materials on humanities in the training system of future teachers. The leading approaches to the study of this problem are student-centered and personally-meaningful approaches to teaching leading to realizing the need for new educational opportunities associated with the use of modern information technologies in the training of future teachers of humanities. The article explains the pedagogical rationale of creating and using e-teaching materials in teaching humanities

    Octahedral clusters in various phases of nonstoichiometric titanium monoxide

    Full text link
    The analytical dependence of cluster configuration probabilities on the vacancy concentrations and the long range order parameters for the TiO y, Ti 5O 5, Ti 3O 2, Ti 2O 3 and Ti 4O 5 phases of titanium monoxide has been calculated for the first time. © 2012 Mendeleev Communications. All rights reserved

    E-Teaching Materials as the Means to Improve Humanities Teaching Proficiency in the Context of Education Informatization

    No full text
    The aim of the article is to determine the specifics of the creation and methodology of the use of e-teaching materials on humanities in the training system of future teachers. The leading approaches to the study of this problem are student-centered and personally-meaningful approaches to teaching leading to realizing the need for new educational opportunities associated with the use of modern information technologies in the training of future teachers of humanities. The article explains the pedagogical rationale of creating and using e-teaching materials in teaching humanities

    Synthesis, Characterization and Photocatalytic Activity of Spherulite-like <i>r</i>-TiO<sub>2</sub> in Hydrogen Evolution Reaction and Methyl Violet Photodegradation

    No full text
    Synthesis and characterization of spherulite-like nanocrystalline titania with rutile structure (r-TiO2) are described herein. The r-TiO2 particles were synthesized via the convenient and low-cost hydrothermal treatment of TiO(C6H6O7) titanyl citrate. The r-TiO2 spherulites are micron-sized agglomerates of rod-shaped nanocrystals with characteristic sizes of 7(±2) × 43(±10) nm, oriented along (101) crystallographic direction, and separated by micropores, as revealed by SEM and TEM. PXRD and Raman spectroscopy confirmed the nanocrystalline nature of r-TiO2 crystallites. BET analysis showed a high specific surface area of 102.6 m2/g and a pore volume of 6.22 mm3/g. Photocatalytic performances of the r-TiO2 spherulites were investigated for the processes of methyl violet (MV) degradation in water and hydrogen evolution reaction (HER) in aqueous solutions of ethanol. The (MV) degradation kinetics was found to be first-order and the degradation rate coefficient is 2.38 × 10−2 min−1. The HER was performed using pure r-TiO2 spherulites and nanocomposite r-TiO2 spherulites with platinum deposited on the surface (r-TiO2/Pt). It was discovered that the r-TiO2/Pt nanocomposite has a 15-fold higher hydrogen evolution rate than pure r-TiO2; their rates are 161 and 11 nmol/min, respectively. Thus, the facile synthesis route and the high photocatalytic performances of the obtained nanomaterials make them promising for commercial use in such photocatalytic processes as organic contamination degradation and hydrogen evolution

    Synthesis, Characterization and Photocatalytic Activity of Spherulite-like r-TiO2 in Hydrogen Evolution Reaction and Methyl Violet Photodegradation

    No full text
    Synthesis and characterization of spherulite-like nanocrystalline titania with rutile structure (r-TiO2) are described herein. The r-TiO2 particles were synthesized via the convenient and low-cost hydrothermal treatment of TiO(C6H6O7) titanyl citrate. The r-TiO2 spherulites are micron-sized agglomerates of rod-shaped nanocrystals with characteristic sizes of 7(&plusmn;2) &times; 43(&plusmn;10) nm, oriented along (101) crystallographic direction, and separated by micropores, as revealed by SEM and TEM. PXRD and Raman spectroscopy confirmed the nanocrystalline nature of r-TiO2 crystallites. BET analysis showed a high specific surface area of 102.6 m2/g and a pore volume of 6.22 mm3/g. Photocatalytic performances of the r-TiO2 spherulites were investigated for the processes of methyl violet (MV) degradation in water and hydrogen evolution reaction (HER) in aqueous solutions of ethanol. The (MV) degradation kinetics was found to be first-order and the degradation rate coefficient is 2.38 &times; 10&minus;2 min&minus;1. The HER was performed using pure r-TiO2 spherulites and nanocomposite r-TiO2 spherulites with platinum deposited on the surface (r-TiO2/Pt). It was discovered that the r-TiO2/Pt nanocomposite has a 15-fold higher hydrogen evolution rate than pure r-TiO2; their rates are 161 and 11 nmol/min, respectively. Thus, the facile synthesis route and the high photocatalytic performances of the obtained nanomaterials make them promising for commercial use in such photocatalytic processes as organic contamination degradation and hydrogen evolution
    corecore