159 research outputs found

    Untersuchung der Mensch-Maschine-Interaktion bei der Werkstückspannung beim Vertikal-Drehen

    Get PDF
    Die Auswertung von Unfallzahlen an Produktionsmaschinen der vergangenen Jahre zeigt, dass nach Jahren sinkender Unfallzahlen eine Stagnation eintritt (Mödden 2018). Der Unfallstatistik der Deutschen Gesetzlichen Unfallversicherung (DGUV) ist außerdem zu entnehmen, dass die Ursache für tödliche oder schwere Unfälle sehr häufig freigesetzte Werkstücke sind. In den meisten Fällen lagen mangelhafte Aufspannsituationen vor (Kesselkaul Meyer 2016). Wenn die Möglichkeiten der inhärent sicheren Konstruktion und der technischen Schutzmaßnahmen ausgeschöpft sind und trotzdem Restrisiken verbleiben, muss im Schritt 3 die Benutzerinformation, die als instruktive Sicherheit zusammengefasst wird, darauf hinweisen (Neudörfer 2014, ISO 12100 2011, MRL 2006). Das Problem ist hierbei, dass die Beachtung der instruktiven Sicherheit vom Bediener abhängig ist. Das Vertikal-Drehen auf Fräsbearbeitungszentren ist ein arbeitssicherheitstechnisch besonders kritischer Prozess, weil dafür die Maschine mit vollwertigen Rotationsachsen für das Werkstück ausgerüstet wird. Durch die hohen Drehzahlen der Werkstücke steigen deren kinetische Energie und damit das Gefährdungsrisiko gegenüber der reinen klassischen Fräsbearbeitung stark an. Im Stillstand und bei geringen Drehzahlen hat das Werkstück dagegen in der Regel einen sicheren Stand und vermittelt dem Maschinenbediener unter Umständen eine trügerische Sicherheit. Wird das Werkstück außerdem manuell gespannt, entstehen trotz ausreichender technischer Zuverlässigkeit des Systems 'Werkzeugmaschine-Spannmittel-Werkstück' Unwägbarkeiten, die rein auf das menschliche Handeln also die Mensch-Maschine-Interaktion zurückzuführen sind. Die auf einer bewährten Risikoabschätzung beruhende normungstechnische Konvention erfordert Überwachungsfunktionen und instruktive Sicherheit für die konkrete Werkstückspannung (ISO 16090 2017). Sie setzt also quasi einen idealen und z. B. nicht ermüdenden und immer richtig handelnden Maschinenbediener voraus. Die oben erwähnten Unfallzahlen sind ein Beweis, dass die reale Situation nicht befriedigend ist. Die wesentliche Frage ist: Wie kann die Mensch-Maschine-Interaktion (MMI) als Teil des Maschinendesigns sicherer gestaltet werden? Und auf das konkrete Beispiel bezogen: Wie kann die Instruktion so verbessert werden, dass schwere Unfälle verhindert werden? Um diese Frage zu beantworten, ist es im ersten Schritt notwendig, den Einfluss der menschlichen Unzuverlässigkeit zu quantifizieren, um ihn so sowohl in technisch-physikalische Auslegung als auch in die Bewertung der Maschinensicherheit einfließen zu lassen

    Untersuchung der Mensch-Maschine-Interaktion bei der Werkstückspannung beim Vertikal-Drehen

    Get PDF
    Die Auswertung von Unfallzahlen an Produktionsmaschinen der vergangenen Jahre zeigt, dass nach Jahren sinkender Unfallzahlen eine Stagnation eintritt (Mödden 2018). Der Unfallstatistik der Deutschen Gesetzlichen Unfallversicherung (DGUV) ist außerdem zu entnehmen, dass die Ursache für tödliche oder schwere Unfälle sehr häufig freigesetzte Werkstücke sind. In den meisten Fällen lagen mangelhafte Aufspannsituationen vor (Kesselkaul Meyer 2016). Wenn die Möglichkeiten der inhärent sicheren Konstruktion und der technischen Schutzmaßnahmen ausgeschöpft sind und trotzdem Restrisiken verbleiben, muss im Schritt 3 die Benutzerinformation, die als instruktive Sicherheit zusammengefasst wird, darauf hinweisen (Neudörfer 2014, ISO 12100 2011, MRL 2006). Das Problem ist hierbei, dass die Beachtung der instruktiven Sicherheit vom Bediener abhängig ist. Das Vertikal-Drehen auf Fräsbearbeitungszentren ist ein arbeitssicherheitstechnisch besonders kritischer Prozess, weil dafür die Maschine mit vollwertigen Rotationsachsen für das Werkstück ausgerüstet wird. Durch die hohen Drehzahlen der Werkstücke steigen deren kinetische Energie und damit das Gefährdungsrisiko gegenüber der reinen klassischen Fräsbearbeitung stark an. Im Stillstand und bei geringen Drehzahlen hat das Werkstück dagegen in der Regel einen sicheren Stand und vermittelt dem Maschinenbediener unter Umständen eine trügerische Sicherheit. Wird das Werkstück außerdem manuell gespannt, entstehen trotz ausreichender technischer Zuverlässigkeit des Systems 'Werkzeugmaschine-Spannmittel-Werkstück' Unwägbarkeiten, die rein auf das menschliche Handeln also die Mensch-Maschine-Interaktion zurückzuführen sind. Die auf einer bewährten Risikoabschätzung beruhende normungstechnische Konvention erfordert Überwachungsfunktionen und instruktive Sicherheit für die konkrete Werkstückspannung (ISO 16090 2017). Sie setzt also quasi einen idealen und z. B. nicht ermüdenden und immer richtig handelnden Maschinenbediener voraus. Die oben erwähnten Unfallzahlen sind ein Beweis, dass die reale Situation nicht befriedigend ist. Die wesentliche Frage ist: Wie kann die Mensch-Maschine-Interaktion (MMI) als Teil des Maschinendesigns sicherer gestaltet werden? Und auf das konkrete Beispiel bezogen: Wie kann die Instruktion so verbessert werden, dass schwere Unfälle verhindert werden? Um diese Frage zu beantworten, ist es im ersten Schritt notwendig, den Einfluss der menschlichen Unzuverlässigkeit zu quantifizieren, um ihn so sowohl in technisch-physikalische Auslegung als auch in die Bewertung der Maschinensicherheit einfließen zu lassen

    Untersuchung der Mensch-Maschine-Interaktion bei der Werkstückspannung beim Vertikal-Drehen

    No full text
    Die Auswertung von Unfallzahlen an Produktionsmaschinen der vergangenen Jahre zeigt, dass nach Jahren sinkender Unfallzahlen eine Stagnation eintritt (Mödden 2018). Der Unfallstatistik der Deutschen Gesetzlichen Unfallversicherung (DGUV) ist außerdem zu entnehmen, dass die Ursache für tödliche oder schwere Unfälle sehr häufig freigesetzte Werkstücke sind. In den meisten Fällen lagen mangelhafte Aufspannsituationen vor (Kesselkaul Meyer 2016). Wenn die Möglichkeiten der inhärent sicheren Konstruktion und der technischen Schutzmaßnahmen ausgeschöpft sind und trotzdem Restrisiken verbleiben, muss im Schritt 3 die Benutzerinformation, die als instruktive Sicherheit zusammengefasst wird, darauf hinweisen (Neudörfer 2014, ISO 12100 2011, MRL 2006). Das Problem ist hierbei, dass die Beachtung der instruktiven Sicherheit vom Bediener abhängig ist. Das Vertikal-Drehen auf Fräsbearbeitungszentren ist ein arbeitssicherheitstechnisch besonders kritischer Prozess, weil dafür die Maschine mit vollwertigen Rotationsachsen für das Werkstück ausgerüstet wird. Durch die hohen Drehzahlen der Werkstücke steigen deren kinetische Energie und damit das Gefährdungsrisiko gegenüber der reinen klassischen Fräsbearbeitung stark an. Im Stillstand und bei geringen Drehzahlen hat das Werkstück dagegen in der Regel einen sicheren Stand und vermittelt dem Maschinenbediener unter Umständen eine trügerische Sicherheit. Wird das Werkstück außerdem manuell gespannt, entstehen trotz ausreichender technischer Zuverlässigkeit des Systems 'Werkzeugmaschine-Spannmittel-Werkstück' Unwägbarkeiten, die rein auf das menschliche Handeln also die Mensch-Maschine-Interaktion zurückzuführen sind. Die auf einer bewährten Risikoabschätzung beruhende normungstechnische Konvention erfordert Überwachungsfunktionen und instruktive Sicherheit für die konkrete Werkstückspannung (ISO 16090 2017). Sie setzt also quasi einen idealen und z. B. nicht ermüdenden und immer richtig handelnden Maschinenbediener voraus. Die oben erwähnten Unfallzahlen sind ein Beweis, dass die reale Situation nicht befriedigend ist. Die wesentliche Frage ist: Wie kann die Mensch-Maschine-Interaktion (MMI) als Teil des Maschinendesigns sicherer gestaltet werden? Und auf das konkrete Beispiel bezogen: Wie kann die Instruktion so verbessert werden, dass schwere Unfälle verhindert werden? Um diese Frage zu beantworten, ist es im ersten Schritt notwendig, den Einfluss der menschlichen Unzuverlässigkeit zu quantifizieren, um ihn so sowohl in technisch-physikalische Auslegung als auch in die Bewertung der Maschinensicherheit einfließen zu lassen

    Tailoring the adsorption behavior of bone char for heavy metal removal from aqueous solution

    No full text
    This paper evaluates the pyrolysis conditions applied during the synthesis of bovine bone char and the effect of these parameters in its adsorption properties for heavy metal removal from aqueous solution at batch reactors. The synthesis route has been analyzed in detail and the surface interactions involved in the adsorption process has been studied and discussed using different characterization techniques, given a special emphasis on X-ray photoelectron spectroscopy (XPS) analysis. A proper selection of the pyrolysis conditions improved the metal uptake of bone chars by 143% where the adsorption capacities ranged from 68.3 up to 119.4 mg/g. The removal performance followed the trend Cd2+ > Zn2+ > Ni2+. However, the multicomponent removal of Zn2+, Cd2+, and Ni2+ ions in both binary and ternary mixtures was a strong antagonistic adsorption process. XPS analysis confirmed that the ion exchange between the calcium, from the hydroxyapatite structure of bone char, and the heavy metals in solution played an important role in the adsorption process. These findings are useful to enhance the efficacy of heavy metal removal from aqueous solution using bone char

    A new synthesis route for bone chars using CO2 atmosphere and their application as fluoride adsorbents

    No full text
    This study describes a new synthesis route for bone chars using a CO2 atmosphere and their behavior as adsorbent for fluoride removal from water. Specifically, we have performed a detailed analysis of the adsorption properties of bone char samples obtained at different carbonization conditions and a comparative study with samples of bone char obtained via pyrolysis under nitrogen. Experimental results show that the nature of the gas atmosphere (CO2 versus N2) and the carbonization temperature play a major role to achieve an effective bone char for water defluoridation. In particular, the best adsorption properties of bone char for fluoride removal are obtained with those samples synthesized at 700 °C. Carbonization temperatures above 700 °C under CO2 atmosphere cause the dehydroxylation of the hydroxyapatite in the bone char, thus reducing its fluoride adsorption capacity. The maximum fluoride adsorption capacity for the bone char obtained in this study under CO2 atmosphere (i.e., 5.92 mg/g) is higher than those reported for commercial bone chars.Authors acknowledge the financial support provided by CONACYT, DGEST, Instituto Tecnológico de Aguascalientes and Universidad de Alicante

    Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation

    No full text
    New bone chars for fluoride adsorption from drinking water have been synthetized via metallic doping using aluminum and iron salts. A detailed statistical analysis of the metal doping process using the signal-to-noise ratios from Taguchi's experimental designs and its impact on the fluoride adsorption properties of modified bone chars have been performed. The best conditions, including the proper metallic salt, for metal doping were identified to improve the fluoride uptakes of modified bone chars. Results showed that the fluoride adsorption properties of bone chars can be enhanced up to 600% using aluminum sulfate for the surface modification. This aluminum-based adsorbent showed an adsorption capacity of 31 mg/g, which outperformed the fluoride uptakes reported for several adsorbents. Surface interactions involved in the defluoridation process were established using FTIR, DRX and XPS analysis. Defluoridation using the metal-doped bone chars occurred via an ion exchange process between fluoride ions and the hydroxyl groups on the adsorbent surface, whereas the Al(OH)xFy, FexFy, and CaF2 interactions could play also an important role in the removal process. These metal-doped adsorbents anticipate a promising behavior in water treatment, especially in developing countries where the efficiency – cost tradeoff is crucial for implementing new defluoridation technologies.Authors acknowledge the financial support provided by CONA-CYT, DGEST, Instituto Tecnológico de Aguascalientes (Mexico), Universidad de Alicante (Spain) and MINECO (Projects PCIN-2013-057 and MAT2013- 45008-P)

    Improved measurement of CPCP violation parameters in Bs0J/ψK+KB_s^0\to J/\psi K^+K^- decays in the vicinity of the ϕ(1020)\phi(1020) resonance

    No full text
    The decay-time-dependent CPCP asymmetry in Bs0J/ψ(μ+μ)K+KB_s^0\to J/\psi(\to \mu^+\mu^-) K^+ K^- decays is measured using proton-proton collision data, corresponding to an integrated luminosity of 6fb16 {\rm fb}^{-1}, collected with the LHCb detector at a center-of-mass energy of 13 TeV. Using a sample of approximately 349 000 Bs0B_s^0 signal decays with an invariant K+KK^+ K^- mass in the vicinity of the ϕ(1020)\phi(1020) resonance, the CPCP-violating phase ϕs\phi_s is measured, along with the difference in decay widths of the light and heavy mass eigenstates of the Bs0B_s^0-Bs0\overline{B}_s^0 system, ΔΓs\Delta\Gamma_s, and the difference of the average Bs0B_s^0 and B0B^0 meson decay widths, ΓsΓd\Gamma_s-\Gamma_d. The values obtained are ϕs=0.039±0.022±0.006\phi_s = -0.039 \pm 0.022 \pm 0.006 rad, ΔΓs=0.0845±0.0044±0.0024 ps1\Delta\Gamma_s = 0.0845 \pm 0.0044 \pm 0.0024 ~{\rm ps}^{-1} and ΓsΓd=0.0560.0015+0.0013±0.0014 ps1\Gamma_s-\Gamma_d = -0.056^{\:+\:0.0013}_{\:-\:0.0015} \pm 0.0014 ~{\rm ps}^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements to date and are consistent with expectations based on the Standard Model and with the previous LHCb analyses of this decay. These results are combined with previous independent LHCb measurements. The phase ϕs\phi_s is also measured independently for each polarization state of the K+KK^+K^- system and shows no evidence for polarization dependence.The decay-time-dependent CPCP asymmetry in Bs0J/ψ(μ+μ)K+KB^0_s\to J/\psi(\to \mu^{+}\mu^{-}) K^{+}K^{-} decays is measured using proton-proton collision data, corresponding to an integrated luminosity of 6 fb1fb^{-1}, collected with the LHCb detector at a center-of-mass energy of 13 TeV. Using a sample of approximately 349 000 Bs0B^{0}_{s} signal decays with an invariant K+KK^{+}K^{-} mass in the vicinity of the ϕ(1020)\phi(1020) resonance, the CPCP-violating phase ϕs\phi_s is measured, along with the difference in decay widths of the light and heavy mass eigenstates of the Bs0B^0_s-Bˉs0\bar{B}^0_s system, ΔΓs\Delta\Gamma_s, and the difference of the average Bs0B^0_s and B0B^0 meson decay widths, ΓsΓd\Gamma_s-\Gamma_d. The values obtained are ϕs= 0.039±0.022±0.006\phi_s = \ -0.039 \pm 0.022 \pm 0.006 rad, ΔΓs=0.0845±0.0044±0.0024\Delta\Gamma_s = 0.0845 \pm 0.0044 \pm 0.0024 ps1^{-1} and ΓsΓd=0.00560.0015+0.0013±0.0014\Gamma_s-\Gamma_d = -0.0056 ^{+ 0.0013}_{-0.0015} \pm 0.0014 ps1^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements to date and are consistent with expectations based on the Standard Model and with the previous LHCb analyses of this decay. These results are combined with previous independent LHCb measurements. The phase ϕs\phi_s is also measured independently for each polarization state of the K+KK^{+}K^{-} system and shows no evidence for polarization dependence

    Measurement of CP violation in B0ψ(+)KS0(π+π)B^0\to\psi(\to\ell^+\ell^-)K^0_S(\to\pi^+\pi^-) decays

    No full text
    International audienceA measurement of time-dependent CP violation in the decays of B0B^0 and B0\overline{B}^0 mesons to the final states J/ψ(μ+μ)KS0J/\psi(\to\mu^+\mu^-)K^0_S, ψ(2S)(μ+μ)KS0\psi(2S)(\to\mu^+\mu^-)K^0_S and J/ψ(e+e)KS0J/\psi(\to e^+e^-)K^0_S with KS0π+πK^0_S\to\pi^+\pi^- is presented. The data correspond to an integrated luminosity of 6 fb1{}^{-1} collected at a centre-of-mass energy of s=13\sqrt{s}=13 TeV with the LHCb detector. The CP-violation parameters are measured to be \begin{align*} S_{\psi K^0_S} &= 0.717 \pm 0.013 (\text{stat}) \pm 0.008 (\text{syst}), \\ C_{\psi K^0_S} &= 0.008 \pm 0.012 (\text{stat}) \pm 0.003 (\text{syst}). \end{align*} This measurement of SψKS0S_{\psi K^0_S} represents the most precise single measurement of the CKM angle β\beta to date and is more precise than the current world average. In addition, measurements of the CP-violation parameters of the individual channels are reported and a combination with the LHCb Run 1 measurements is performed

    Helium identification with LHCb

    No full text
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pppp collision data at s=13TeV\sqrt{s}=13\,{\rm TeV} recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5fb15.5\,{\rm fb}^{-1}. A total of around 10510^5 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50%50\% with a corresponding background rejection rate of up to O(1012)\mathcal O(10^{12}). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei
    corecore