37 research outputs found

    Evaluating the energy efficiency of software defined-based cloud radio access networks

    Get PDF
    Densifying the communications network and integrating innovative technologies leads to increased Power Consumption (PC), along with increased signalling and degraded scalability. The latter can be mitigated by using Software Defined Networks (SDN), while Cloud Radio Access Network (C-RAN) reduces the PC. Since evaluating and improving the PC is an important key success factor for the upcoming 5G generations, a reliable Power Model (PM) is required. This paper proposes a componentised, linear and parameterised PM, and explores the individual components relevant for PC analysis, particularly for Software Defined Cloud-Radio Access Network (SDC-RAN) architecture. The model quantifies the Energy Efficiency (EE) by capturing the PC of individual components, and measures the amount of PC in the network. Cooling and total PC of C-RAN and SDC-RAN for different parameters such as varying numbers of antennas and different system’s bandwidth share has also been considered. The results show that SDC-RAN increases the total PC by about 20% compared to C-RAN. Additionally, the paper shows the results of modelling the participating Core Network’s (CN) control plane unit’s PC along with establishing the accuracy of the components and the parameterised models

    64-GHz millimeter-wave photonic generation with a feasible radio over fiber system

    Get PDF
    Copyright 2017 Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited.A full-duplex radio over fiber (RoF) link with the generation of a 64-GHz millimeter wave (mm-wave) is investigated. This system is proposed as a solution to cope with the demands of a multi-Gb/s data transmission in the fifth generation (5G) and beyond for small cell networks. Cost reduction and performance improvement are achieved by simplifying the mm-wave generation method with an RoF technique. High-frequency radio signals are considered challenging in the electrical generation domain; therefore, our photonic generation method is introduced and examined. RoF design is proposed for mm-wave generation using both phase modulation and the effect of stimulated Brillouin scattering in the optical fiber for the first time. RoF system with transmission rates of 5 Gb/s is successfully achieved. In our scheme, one laser source is utilized and a fiber Bragg grating is used for wavelength reuse for the uplink connection. Stable mm-wave RoF link is successfully achieved in up to a 100-km fiber link length with high quality carrier. Simulation results show a reduction in fiber nonlinearity effects and the mm-wave signal has low noise equal to -75 dBm. This study ensures a practical mm-wave RoF link, and it could be appropriate for small cell 5G networks by reducing the installation cost

    Ratio of Products of Mixture Gamma Variates with Applications to Wireless Communications Systems

    Get PDF
    The fading scenario of many realistic wireless communication transmission systems, such as, multi-hop communications and spectrum sharing in cognitive radio networks (CRNs), can be modelled by the product and the ratio of the product of the random variables (RVs) of the channel distribution. However, there is no work has been investigated in the literature to provide unified statistics of the product and the ratio of the products that can be used for a wide range of non-composite and composite fading conditions. Accordingly, in this paper, the statistical properties, namely, probability density function (PDF), cumulative distribution function (CDF), and moment generating function (MGF) of the product and the ratio of the product of independent and non-identically distributed (i.n.d.) mixture Gamma (MG) RVs are derived. A MG distribution has been widely employed to approximate with high accuracy most of the conventional fading models, for example, Rayleigh, Nakagami-m, Nakagami-q (Hoyt), and Nakagami-n (Rician) as well as the generalised composite fading channels, such as, generalised- (),− /gamma, − /gamma, and − /gamma. Hence, the derived PDF, CDF, and MGF are utilized for the Beaulieu–Xie and −−− shadowed fading channels that have not been yet presented by the previous works due to mathematical intractability of their statistics. Thus, the equivalent parameters of a MG distribution for these channels are given. To this end, simple closed-form mathematically tractable expressions of the performance metrics are obtained. The derived statistics are applied to analyse the outage probability (OP), the average error probability for different modulation schemes, the effective rate (ER) of wireless communication systems and the average area under the receiver operating characteristics (AUC) curve of energy detection over cascaded fading channels. Moreover, the OP of the multi-hop communications systems with co-channel interference (CCI), both the lower bound of secure OP (SOPL) and probability of non-zero secrecy capacity (PNSC) of the physical layer security (PLS), and the outage and delay-limited capacities of CRNs are studied via using the statistics of the ratio of the product of MG variates. A comparison between the numerical results and the Monte Carlo simulations is presented to verify the validation of our analysis
    corecore