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Abstract—In this paper, the performance of the selection
combining (SC) scheme over independent and non-identically
distributed (i.n.i.d.) Fisher-Snedecor F fading channels is anal-
ysed. Accordingly, the probability density function (PDF) and the
moment generating function (MGF) of the maximum of i.n.i.d.
Fisher-Snedecor F variates are derived first. Based on these
statistics, the exact expression and the asymptotic behaviour at
high average signal-to-noise ratio value of the average bit error
probability (ABEP), the normalised average channel capacity
(ACC), and the average area under the receiver operating char-
acteristics curve (AUC) of the energy detection based spectrum
sensing with i.n.i.d. SC diversity receivers are provided. To
validate our analysis, the numerical results are compared with
the Monte Carlo simulations.

Index Terms—Selection combining, Fisher-Snedecor F fading,
average error probability, channel capacity, energy detection.

I. INTRODUCTION

SELECTION combining (SC) diversity reception has been
widely used in the literature to improve the performance of

wireless communications systems. This is because it has low
implementation complexity in comparison with the maximal
ratio combining (MRC) where the branch with a high signal-
to-noise ratio (SNR) is selected among many branches [1].

The probability density function (PDF), the cumulative dis-
tribution function (CDF), and the moment generating function
(MGF), of the maximum of random variables (RVs) are em-
ployed to analyse the performance of the SC scheme [2]-[5].
For instance, the behaviour of SC receivers over independent
and non-identically distributed (i.n.i.d.) generalized-K (KG)
fading was investigated in [2]. The average bit error probability
(ABEP) of SC with i.n.i.d. branches over κ − µ shadowed
fading was derived in [3]. In [4], the statistics of the maximum
of η − µ/gamma RVs were provided with applications to
the average channel capacity (ACC). The average area under
the receiver operating characteristics (ROC) curve (AUC) of
energy detection (ED) with SC branches was presented in [5].

Recently, the Fisher-Snedecor F fading has been proposed
as a composite of Nakagami-m and inverse Nakagami-m dis-
tributions to model the device-to-device (D2D) fading channel
at 5.8 GHz in both indoor and outdoor environments [6], [7]. In
contrast to the KG fading, the statistics of the Fisher-Snedecor
F distribution are expressed in simple elementary functions.
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Furthermore, it includes Nakagami-m, Rayleigh, and one-
sided Gaussian as special cases. The Fisher-Snedecor F fading
can be utilised for both the line-of-sight (LoS) and the non-
LoS (NLoS) communications scenarios with better fitting to
the empirical measurements than the KG. Consequently, the
ABEP of the MRC was analysed in [8] using the PDF of the
sum of i.n.i.d. Fisher-Snedecor F variates. The behaviour of an
ED with square law selection (SLS) in i.n.i.d. Fisher-Snedecor
F fading was studied in [9]. The distribution of the ratio of
products of Fisher-Snedecor F RVs was presented in [10].

To the best of authors’ knowledge, no work has been yet
devoted in the literature to derive the statistical properties of
the maximum of i.n.i.d. Fisher-Snedecor F variates. Motivated
by this, our main contributions in this paper are twofold.
• We derive the exact and the asymptotic expressions at

high average SNR value of the PDF and the MGF of the
maximum of i.n.i.d. Fisher-Snedecor F RVs.

• Capitalising on the above, the performance of the ABEP,
the ACC, and the average AUC of ED with i.n.i.d. SC
diversity receivers are analysed. To this end, mathemati-
cally tractable closed-form expressions are obtained.

II. FISHER-SNEDECOR F FADING CHANNEL

The CDF of the instantaneous SNR at ith receiver, γi over
Fisher-Snedecor F fading is expressed as [7, eq. (12)]

Fγi(γ) =
Ξmii γmi

miB(mi,msi)
2F1(mi +msi ,mi; 1 +mi;−Ξiγ)

(a1)
= Φiγ

miH1,2
2,2

[
Ξiγ

∣∣∣∣(1−mi −msi , 1), (1−mi, 1)
(0, 1), (−mi, 1)

]
(1)

where Ξi = mi
(msi−1)γ̄i

, Φi =
Ξ
mi
i

Γ(mi)Γ(msi )
, mi is the

real extension of the number of multipath clusters, msi > 1
stands for the shadowing severity parameter, B(., .) is the
beta function [11, eq. (8.380.1)], 2F1(., .; .; .) is the Gauss
hypergeometric function [11, eq. (9.14.1)], and Hm,n

p,q [.] is the
Fox’s H-function (FHF) defined in [12, eq. (1.2)]. Step (a1)
is developed by applying the identities [12, eq. (1.132)] and
[11, eq. (8.384.1)/ eq. (8.331.1)].

III. MAXIMUM I.N.I.D. FISHER-SNEDECOR F VARIATES

Proposition 1: Let all RVs, γi ∼ F(mi,msi , γ̄i) for
i ∈ {1, · · · , L} where L is the number of the variates,
follow i.n.i.d. Fisher-Snedecor F distribution. Thus, the PDF
of γ = max{γ1, · · · , γL} is derived as in (2) shown at the top
of the next page. In (2), Φ =

∏L
i=1 Φi, Ω =

∑L
i=1mi and
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fγ(γ) = ΦγΩ−1H
0,1:[1,2]i=1:L

1,1:[2,2]i=1:L

[
Ξ1γ, · · · ,ΞLγ

∣∣∣∣ (−Ω; {1}i=1:L)
(1− Ω; {1}i=1:L)

∣∣∣∣[(1−mi −msi , 1), (1−mi, 1)]i=1:L

[(0, 1), (−mi, 1)]i=1:L

]
(2)

Mγ(s) =
Φ

sΩ
H

0,1:[1,2]i=1:L

1,0:[2,2]i=1:L

[
Ξ1

s
, · · · , ΞL

s

∣∣∣∣(−Ω; {1}i=1:L)
−

∣∣∣∣[(1−mi −msi , 1), (1−mi, 1)]i=1:L

[(0, 1), (−mi, 1)]i=1:L

]
(9)

Pe =
Φ

2
√
πρΩ

H
0,1:[1,2]i=1:L

1,0:[2,2]i=1:L

[
Ξ1

ρ
, · · · , ΞL

ρ

∣∣∣∣(0.5− Ω; {1}i=1:L)
−

∣∣∣∣[(1−mi −msi , 1), (1−mi, 1)]i=1:L

[(0, 1), (−mi, 1)]i=1:L

]
(14)

H
m,n:[mi,ni]i=1:L

p,q:[pi,qi]i=1:L
[.] is the extended generalised bivariate Fox’s

H-function (EGBFHF) [12, eq. (A.1)] that can be evaluated
by using an efficient MATLAB code of [13].

Proof: The CDF of the maximum i.n.i.d. variates can be
computed via inserting (1) in Fγ(γ) =

∏L
i=1 Fγi(γ) [4, eq.

(12)]. Accordingly, we have

Fγ(γ) =Φ

L∏
i=1

γmiH1,2
2,2

[
Ξiγ

∣∣∣∣(1−mi −msi , 1), (1−mi, 1)
(0, 1), (−mi, 1)

]
(4)

Recalling the definition of the FHF [12, eq. (1.2)], (4) can
be expressed in multiple Barnes-type closed contours as

Fγ(γ) =
Φ

(2πj)L

∫
U1

· · ·
∫
UL

{ L∏
i=1

Γ(ui)Γ(mi +msi − ui)

Γ(mi − ui)
Γ(1 +mi − ui)

Ξ−uii

}
γΩ−

∑L
i=1 uidu1 · · · duL (5)

where j =
√
−1 and Ui is the ith suitable contour in the

u-plane from σi− j∞ to σi+ j∞ with σi is a constant value.
Differentiating (5) with respect to γ to obtain fγ(γ), i.e.,

fγ(γ) = dFγ(γ)/dγ and then invoking the identity Γ(1+x) =
xΓ(x) [11, eq. (8.331.1)]. Thus, this yields

fγ(γ) =
Φ

(2πj)L

∫
U1

· · ·
∫
UL

{ L∏
i=1

Γ(ui)Γ(mi +msi − ui)

Γ(mi − ui)
Γ(1 +mi − ui)

Ξ−uii

}
Γ(1 + Ω−

∑L
i=1 ui)

Γ(Ω−
∑L
i=1 ui)

γΩ−
∑L
i=1 ui−1du1 · · · duL (6)

With the help of [12, eq. (A.1)], (6) can be written in exact
closed-form expression as in (2) which finishes the proof.

Since 2F1(., .; .; .) of (1) tends to unity when γ̄i →∞, the
asymptotic of the CDF, FAsy

γ (γ), can be expressed as

FAsy
γ (γ) ≈

L∏
i=1

Ξmii
miB(mi,msi)

γmi (7)

Making use of fAsy
γ (γ) = dFAsy

γ (γ)/dγ, the PDF at high
average SNR value is obtained as

fAsy
γ (γ) ≈ Ω

( L∏
i=1

Ξmii
miB(mi,msi)

)
γΩ−1 (8)

Proposition 2: The MGF of γ, Mγ(s), is provided in (9)
as shown at the top of this page.

Proof: The MGF can be calculated by plugging (5) in
Mγ(s) = sL{Fγ(γ);−s} where L{.} represents the Laplace
transform operation. Hence, we have

Mγ(s) =
Φ

(2πj)L

∫
U1

· · ·
∫
UL

{ L∏
i=1

Γ(ui)Γ(mi +msi − ui)

Γ(mi − ui)
Γ(1 +mi − ui)

Ξ−uii

}
sL{γΩ−

∑L
i=1 ui ;−s}du1 · · · duL

(10)

Invoking [11, eq. (3.381.4)] to compute the Laplace trans-
form of (10) and recalling [12, eq. (A.1)], (9) is deduced.

Using (7) and following the same steps of the Proposition
2, the asymptotic of the MGF, MAsy

γ (s), is given by

MAsy
γ (s) ≈

( L∏
i=1

Ξmii
miB(mi,msi)

)
Γ(1 + Ω)

sΩ
(11)

IV. PERFORMANCE ANALYSIS OF SC SCHEME

A. Average Bit Error Probability

The ABEP can be evaluated by [1, eq. (9.11)]

Pe =
1

π

∫ π
2

0

Mγ

(
ρ

sin2 θ

)
dθ. (12)

where ρ = 0.5, ρ = 1, and ρ = 0.715 for coherent binary
frequency shift keying (BFSK), binary phase shift keying
(BPSK), and BFSK with minimum correlation, respectively.

Substituting (9) into (12) and employing [12, eq. (A.1)] and
x = sin2 θ, the following inner integral is obtained∫ 1

0

xΩ−
∑L
i=1 ui−

1
2

√
1− x

dx
(a2)
=

Γ( 1
2 )Γ
(

1
2 + Ω−

∑L
i=1 ui

)
Γ
(
1 + Ω−

∑L
i=1 ui

) (13)

where (a2) follows [11, eq. (3.191.3)/ eq. (8.384.1)].
Next, plugging the result of (13) and the remaining parts

of (9) in (12) and invoking [12, eq. (A.1)], Pe is yielded as
given in (14) at the top of this page.

Inserting (11) in (12) and using x = sin2 θ as well as
following the same procedure of (13), the asymptotic of the
ABEP at high average SNR regime, PAsy

e , is expressed as

PAsy
e ≈

( L∏
i=1

Ξmii
miB(mi,msi)

)
Γ(0.5 + Ω)

2
√
πρΩ

(15)

After substituting Ξi = mi
(msi−1)γ̄i

into (15) and approxi-

mating the result to be PAsy
e ≈ γ̄−Gd where Gd denotes the



IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 00, NO. 00, JUNE 2020 3

C̄ =
Φ

ln2
H

1,1:[1,2]i=1:L

1,1:[2,2]i=1:L

[
Ξ1, · · · ,ΞL

∣∣∣∣(1− Ω; {1}i=1:L)
(1− Ω; {1}i=1:L)

∣∣∣∣[(1−mi −msi , 1), (1−mi, 1)]i=1:L

[(0, 1), (−mi, 1)]i=1:L

]
(18)

Ā =1− Φ

u−1∑
k=0

k∑
l=0

(
k + u− 1

k − l

)
1

2k−Ω+ul!

×H0,2:[1,2]i=1:L

2,1:[2,2]i=1:L

[
2Ξ1, · · · , 2ΞL

∣∣∣∣(−Ω, {1}i=1:L), (1− l − Ω, {1}i=1:L)
(1− Ω, {1}i=1:L)

∣∣∣∣[(1−mi −msi , 1), (1−mi, 1)]i=1:L

[(0, 1), (−m1, 1)]i=1:L

]
(23)

diversity order, one can observe that Gd is proportional to L
and mi, i.e., PAsy

e ≈
∏L
i=1 γ̄

−mi
i , whereas for independent

and identically distributed (i.i.d.) branches, Gd = Lm. These
observations are consistent with [6] in which Gd = m for
L = 1.

B. Average Channel Capacity
The normalised ACC, C̄, can be computed by [7, eq. (20)]

C̄ =
1

ln2

∫ ∞
0

ln(1 + γ)fγ(γ)dγ (16)

Plugging (6) in (16), we have the following inner integral∫ ∞
0

γΩ−
∑L
i=1 ui−1ln(1 + γ)dγ

(a3)
=

Γ(1− Ω +
∑L
i=1 ui)[Γ(Ω−

∑L
i=1 ui)]

2

Γ(1 + Ω−
∑L
i=1 ui)

(17)

where (a3) obtains after using [11, eq. (4.293.10)] and recall-
ing [11, eq. (8.334.3)/ eq. (8.331.1)].

Substituting the result of (17) and the remaining terms of
(6) into (16), C̄ is yielded as in (18) at the top of this page.

Inserting (11) in [4, eq. (27)], the asymptotic of the nor-
malised ACC at γ̄i →∞, C̄Asy, is derived as

C̄Asy ≈
M∑
l=1

wl
xl ln 2

[
1−

( L∏
i=1

Ξmii
miB(mi,msi)

)
Γ(1 + Ω)

xΩ
l

]
(19)

where M is the number of terms for the Gaussian-Laguerre
integration whereas xl and wl are the abscissas and the weight
factors, respectively [16].

It is obvious that Gd of (19) is proportional to L and mi

for i.n.i.d. case, whereas Gd = Lm for identical receivers.

C. Average AUC of Energy Detection Based-Spectrum Sensing
The AUC is a single figure of merit that evaluates the area

under the ROC curve. Hence, the AUC is used in the analysis
of the ED when the ROC curve doesn’t give a clear insight
into the behaviour of the system.

The average AUC, Ā, can be calculated by [9, eq. (36)]

Ā =

∫ ∞
0

A(γ)fγ(γ)dγ (20)

where A(γ) is given as [9, eq. (35)]

A(γ) = 1−
u−1∑
k=0

k∑
l=0

(
k + u− 1

k − l

)
1

2k+l+ul!
γle−

l
2 (21)

where u = TB is the time (T )-bandwidth (B) product and(
b
a

)
denotes the binomial coefficient.

After plugging (21) and (6) in (20) and invoking∫∞
0
fγ(γ)dγ , 1, the following inner integral is obtained∫ ∞

0

γl+Ω−
∑L
i=1 ui−1e−

l
2 dγ

(a4)
= 2l+Ω−

∑L
i=1 uiΓ

(
l + Ω−

L∑
i=1

ui

)
(22)

where (a4) arises after utilising [11, eq. (3.381.4)].
Substituting the result of (22) as well as the remaining parts

of (6) and (21) into (20), we have a closed-form expression
of Ā as shown in (23) at the top of this page.

Inserting (8) and (21) in (20) and with the aid of [11, eq.
(3.381.4)], the asymptotic analysis of the AUC at high average
SNR regime, ĀAsy, is derived as

ĀAsy ≈
( L∏
i=1

Ξmii
miB(mi,msi)

)

×
[
1−

u−1∑
k=0

k∑
l=0

(
k + u− 1

k − l

)
Γ(l + Ω)

2k−Ω+ul!

]
(24)

Similar to (15) and (19), the diversity order, Gd, of (24)
which is for arbitrary distributed branches, is proportional to
L and mi, whereas Gd = Lm for i.i.d. case.

V. ANALYTICAL AND SIMULATION RESULTS

In this section, to validate our analysis, the Monte Carlo
simulations that are obtained via generating 107 realizations
for each RV are compared with the analytical results. The
Fisher-Snedecor F fading channel of SC scheme was gen-
erated by the product of independent variates that were ob-
tained via the inverse CDF of the inverse Nakagami-m and
Nakagami-m distributions. Three scenarios of the shadowing
impact, which are heavy, moderate, and light are studied by
using ms = 1.5, ms = 5 and ms = 50, respectively.

Figs. 1 and 2 illustrate the ABEP for BPSK and the nor-
malised ACC with M = 15 for single receiver, dual, and triple
SC branches over i.n.i.d. Fisher-Snedecor F fading channels.
As anticipated, the performance becomes better when the SC
scheme is employed and monotonically improves with the
increasing in the number of the diversity branches. This is
because the received average SNR of SC with L = 3 is
higher than the no-diversity, i.e. L = 1, and L = 2 cases.
For example, in Fig. 1, at fixed γ̄ = 7 dB and ms = 1.5, the
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Fig. 1. ABEP for BPSK of SC scheme with i.n.i.d. branches.
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Fig. 2. Normalised ACC of SC scheme with i.n.i.d. branches.

ABEP for L = 3 is approximately 82% and 60% less than
that for L = 1 and L = 2 with m = [3.5, 4.5], respectively.
Furthermore, for further validations, a comparison between the
ABEP of SC and MRC of [8], has been shown in Fig. 1.
As expected, the MRC provides less ABEP than the SC but
with high implementation complexity. In addition, the result
for L = 1 of [7] in Fig 2 is obtained by utilising (18). In
both figures, the perfect matching between the numerical and
the simulation results as well as their asymptotic counterparts
at high average SNR can be observed, which confirms the
correctness of our derived expressions.

Fig. 3 shows the behaviour of an AUC versus m and ms

and different values of u and L for γ̄ = 5 dB. In this figure, a
substantial enhancement in the AUC is occurred when m, ms,
or/and L become large. This is because the increasing in m,
ms, and L would lead to a large number of multipath clusters,
less effect of the shadowing, and high received average SNR,
respectively. Also, when the parameter u reduces, the value of
the AUC increases due to the increasing in both the detection
and the false alarm probabilities simultaneously.

VI. CONCLUSIONS

In this paper, both the exact and the asymptotic of the
PDF and the MGF of the maximum of i.n.i.d. Fisher-Snedecor
F RVs were derived in mathematically tractable closed-form
expressions. These statistics were then used to study the
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Fig. 3. AUC versus ms and m and different values of u and L.

performance of the SC diversity reception over i.n.i.d. Fisher-
Snedecor F fading channels. To this end, the exact and
the asymptotic expressions of the ABEP, the ACC, and the
AUC of an ED were analysed. The diversity order which is
proportional to the number of the diversity branches and the
parameter m is also provided to validate of our results.
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