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This letter analyses the effective capacity of communications system
using unified models. In order to obtain a simple closed-form
mathematically tractable expression, two different unified approximate
models have been used. The mixture gamma (MG) distribution which
is highly accurate approximation approach has been firstly employed
to represent the signal-to-noise-ratio (SNR) of fading channel. In the
second approach, the mixture of Gaussian (MoG) distribution which is
another unified representation approach has been utilised. A comparison
between the simulated and numerical results using both distributions
over composite α − η − µ/gamma fading channels has been provided.

Introduction: The ergodic capacity that is proposed by Shannon is
measured by assuming no delays for wireless communication systems.
Therefore, the effective capacity (or effective rate) has been suggested as
a performance metric that can be used to measure the system behaviour
under the quality of service restrictions such as system delays [1]. In the
effective capacity, guaranteed statistical delay restrictions are assumed
to be presented when the maximum constant value of the throughput
that arrives at the transmitter is measured. Accordingly, several studies
have been devoted to analyse the effective capacity over wireless fading
channels [2]. To represent the line-of-sight (LoS), non-LoS (NLoS), and
non-linearity communication scenarios of wireless fading channels, the
κ− µ, η − µ, and α− µ distributions which are generalised models that
provide better practical results than the traditional distributions such as
Nakagami-m are investigated in [3], [4], and [5], respectively.

The impact of shadowing fading is also considered in the analysis
of the effective capacity of communication systems over composite
fading channels such as generalised-K and Weibull/gamma [2, 6]. In
[7], the κ− µ shadowed fading channel which is composite of κ− µ
and Nakagami-m distributions is utilised to model the fading channel.
However, no works have been dedicated to analyse the effective capacity
over composite η − µ/shadowing and α− µ/shadowing fading channels.
Furthermore, the unified framework in [6] is based on the moment
generating function (MGF) of the instantaneous signal-to-noise ratio
(SNR) that cannot be obtained in exact closed-form expression.

Motivated by there is no general unified approach for the effective
capacity, this letter provides two different frameworks by using mixture
gamma (MG) [8] and mixture of Gaussian (MoG) distributions [9].
These distributions have been widely utilised in the analysis of digital
communication systems [10, 11]. This is because they provide simple
closed-form analytic expression of the performance metrics. To this
effect, the effective capacity over composite α− η − µ/gamma fading
condition which is more generalised than the aforementioned channels is
analysed using MG and MoG distributions. The main difference between
the MG and MoG distributions is the number of the parameters that
is required to achieve a minimum mean square (MSE) between the
probability density function (PDF) of the exact and approximate models.

System model: The normalised effective capacity over fading channels is
expressed by [7, eq. (1)]

R=−
1

A
log2

(
E{(1 + γ)−A}

)
(1)

where E{.} stands for the expectation and A, θTB/ln2 with θ, T ,
and B denote the delay exponent, block duration, and bandwidth of the
system, respectively.

The MG distribution: Using a MG distribution, the PDF of the
instantaneous SNR can be written as [8, eq.(1)]

fγ(γ) =

S∑
l=1

φlγ
ϑl−1e−ξlγ (2)

where S is the number of Gamma distributions which is obtained via
calculating the minimum MSE between (2) and exact PDF and φl, ϑl,
and ξl correspond to the parameters of l Gamma component.

The MoG distribution: The PDF of the instantaneous SNR, γ, can be
expressed using a MoG as [9, eq. (24)]

fγ(γ) =

N∑
i=1

ρi√
8πγ̄γψi

e
−

(√
γ
γ̄
−υi
)2

2ψ2
i (3)

where N is the number of Gaussian components that provides minimum
MSE and ρi, ψi, and ψ2

i are the weight, mean, and variance of the ith
component, respectively. Moreover,

∑N
i=1 ρi = 1 with ρi > 0.

MG distribution based analysis: It can be noted that (1) can be expressed
as

R=−
1

A
log2

( ∫∞
0

(1 + γ)−Afγ(γ)dγ

)
(4)

Substituting (2) in (4), this yields

R=−
1

A
log2

( S∑
l=1

φl

∫∞
0

(1 + γ)−Aγϑl−1e−ξlγdγ

)
(5)

Employing [2, eq. (9)] to compute the integration in (4), the following
unified closed-from is obtained

R=−
1

A
log2

( S∑
l=1

φlΓ(ϑl)U(ϑl;ϑl + 1−A; ξl)

)
(6)

where Γ(.) is the incomplete Gamma function and U(.; .; .) is the Tricomi
hypergeometric function defined in [12, eq. (39)].

MoG distribution based analysis: When (3) is inserted in (4), the integral
cannot be solved in exact closed-form. Accordingly, we express the
functions of the integral in terms of Meijer G-function by using [13, eq.
(10)], [13, eq. (11)], and [14, eq. (01.03.26.0115.01)]
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where Ga,bn,m[.] is the Meijer’s G-function [15, eq. (7)].
Plugging (7) in (4), this yields
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With the aid of [15, eq. (9)], the integral in (8) can be computed in
exact closed-form as follows
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It can be observed that (9) includes a Meijer’s G-function of two
variables which can be evaluated by using the MATHEMATICA program
that is implemented in [15].

The PDF of α− η − µ/gamma fading channels: The PDF of SNR in
α− η − µ/gamma fading can be calculated via averaging the PDF of α−
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η − µ [16, eq. (8)] over Gamma distribution as follows

fγ(γ) =

√
παhµµµ+

1
2 γ
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)
dx (10)

where α, µ, b, and Ω stand for the non-linearity severe parameter,
the number of multipath clusters, shadowing index, and mean power,
respectively. Moreover, where Ik(.) is the modified Bessel function of
the first kind and kth order [12]. The parameters H and h are related
to η which represents a relationship between the quadrature and in-
phase scattered components, into two formats, format 1 and format 2.
In the former, H = (η−1 − η)/4 and h= (2 + η−1 + η)/4 with η ∈
(0,∞) denotes the power ratio between the components whereas in the
latter H = η/(1− η2) and h= 1/(1− η2) with η ∈ (−1, 1) refers to the
correlation coefficient between the components [16].

Using z = 2µhγ
α
2

x
α
2

and following the same steps in [11], (10) can be
expressed by a MG distribution with the following parameters

φl =
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Simulation
α = 1, η = 0.05, µ = 0.5, b = 1.5
α = 1, η = 0.05, µ = 2.5, b = 1.5
α = 1, η = 0.5, µ = 2.5, b = 1.5
α = 1, η = 0.5, µ = 2.5, b = 3.5
α = 2, η = 0.5, µ = 2.5, b = 3.5
α = 2, η → 1, µ = 2.5, b → ∞

Nakagami−5

η−µ/gamma

Fig. 1 Simulated and numerical effective capacity using MG distribution
against average SNR, γ̄, of α− η − µ/gamma fading with different values
of α, η, µ, and b (A= 1).
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Simulation
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α−µ/gamma

Fig. 2 Simulated and numerical effective capacity using MoG distribution
against delay exponent, θ, of α− η − µ/gamma fading with different values
of α, η, µ, and b (T = 1 and γ̄ = 0 dB).

Numerical results: Fig. 1 and Fig. 2 show the simulated and numerical
effective capacity of α− η − µ/gamma fading (format 1) against the
average SNR, γ̄, using MG distribution and delay exponent, θ, using
MoG approach, respectively. The number of components for both
distributions, namely, S and N , are chosen to achieve MSE≤ 10−8.
In Fig. 2, the parameters have been calculated by following the same
procedure in [9]. From both figures, it can be observed that the effective
capacity becomes better when µ, η or/and b increase. This is because
higher µ, η and b mean the number of multipath clusters is large, the
received power is high and the shadowing impact is low, respectively.

Conclusion: In this letter, we have used MG and MoG distributions to
analyse the effective capacity over α− η − µ/gamma fading channels.
These distributions can be employed to approximate with high accuracy
the PDF of a wide range of distributions that are used in modelling
the wireless channels. Although the MG distribution leads to simple
expression, its not applicable for all fading channels. Therefore, we
have utilised the MoG distribution. To this effect, unified simple closed-
form mathematically tractable expressions are derived. The results have
showed different scenarios that have not been yet investigated in the
technical literature such as η − µ and α− µ/gamma fading channels.
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