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On the Effective Rate and Energy Detection Based Spectrum
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Abstract—In this paper, the effective rate (ER) of wireless
communication systems and the performance of energy detection
(ED) based spectrum sensing over α − η − κ − µ fading chan-
nels are analysed. To this end, novel mathematically tractable
exact expressions of the ER, the average detection probability
(ADP) and the average area under the receiver characteristics
curve (AUC) are derived. The asymptotic expressions at high
average signal-to-noise ratio (SNR) values are also provided. A
comparison between the numerical results and Monte Carlo sim-
ulations is presented to verify the validation of our analysis. The
mathematical relationship between the ER and the performance
metrics of the ED which is based on the time-bandwidth product,
is explained. The provided results show that the increase in the
time-bandwidth product from 1 to 4 reduces the ER, the ADP,
and the average AUC by nearly 21%, 8%, and 3%, respectively,
for constant average SNR at 15 dB and delay exponent at 0.1.

Index Terms—effective rate, energy detection, α − η − κ − µ
fading channel.

I. INTRODUCTION

TO model the multipath fading impacts of wireless chan-
nels, different distributions have been used in the open

literature such as Nakagami-m and Nakagami-n [1]. However,
in [2]-[3], the authors explained that the results of these
distributions don’t match well with the field measurements.
This is because the derivation of these distributions is based
on an assumption of a homogeneous diffuse scattering field.
Consequently, several generalised distributions have been sug-
gested to provide better fitting to the practical data via con-
sidering the multipath waves of the clusters of the transmitted
signal are propagated in non-homogeneous and/or non-linear
environments (see [2]-[5] and references therein). Moreover,
these distributions comprise most of the well-known classic
fading conditions as special cases. For instance, the κ − µ
and the η − µ fading channels are employed to represent the
line-of-sight (LoS) and the non-LoS (NLoS) fading conditions,
respectively [2]. In addition, the α− µ fading is used for the
non-linear environment of communication systems [3]. In [4],
the α−η−µ fading channel is presented as a unified framework
for α−µ and η−µ as well as the α−κ−µ fading is proposed
as a combined model for both α− µ and κ− µ distributions.

Recently, the authors in [5] proposed the so-called α− η−
κ − µ fading channels as a unified model for α − η − µ and
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α − κ − µ distributions. Hence, this representation includes
nearly all the generalised LoS, NLoS, and non-linear fading
scenarios. Accordingly, the α−η−κ−µ fading has been used
to analyse the channel capacity under different transmission
policies [6] and the physical layer security [7]. In [8], the
outage and error probabilities as well as the channel capacity
are given.

In this paper, the effective rate (ER) and the energy detection
(ED) based spectrum sensing (SS) over α− η− κ− µ fading
channels that have not been yet studied by previous works,
are analysed. Additionally, the relationship between the ER
and the performance of ED is also explained.

Our main contributions are summarized as follows:
• We derive novel exact mathematically tractable expres-

sion of the ER of α− η − κ− µ fading channels.
• The performance of ED based SS over α−η−κ−µ fading

channels is analysed via deriving the average detection
probability (ADP) and the average area under the receiver
operating characteristics curve (AUC). To this end and to
the best of the authors’ knowledge, novel mathematically
tractable expressions are obtained.

• We derive the asymptotic expressions for the ER and
average AUC to gain further insights into the impacts
of the fading parameters on the system performance.

• We employ a highly accurate method to compute the
number of the truncated terms that makes the infinite
series of the probability density function (PDF) converges
steadily and quickly for a certain figure of accuracy.

• Unlike [9] in which the relationship between the entropy
and the ED over F fading channel is explained via
studying the impact of the channel parameters on them,
we prove that the ER and the performance metrics of
the ED are mathematically related by the time-bandwidth
product. This relationship gives good insights on how the
ED of the signal and the quality of service (QoS) are si-
multaneously influenced by the time-bandwidth product.

II. THE α− η − κ− µ FADING CHANNEL MODEL

The signal envelope, R, in α − η − κ − µ fading channel
can be expressed as [5, eq. (9)]

Rα =

µx∑
i=1

(Xi + λxi)
2 +

µy∑
i=1

(Yi + λyi)
2 (1)

where Xi and Yi are mutually independent Gaussian processes
with E[Xi] = E[Yi] = 0, E[Xi] = σ2

x and E[Xi] = σ2
y , with

E[.] denoting statistical expectation, while λxi and λyi are,
respectively, the mean values of the in-phase and quadrature
components of the multipath waves of the cluster i. Moreover,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362655161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 00, NO. 00, JANUARY 2020 2

α represents the non-linearity parameter while µx and µy stand
for the number of multipath clusters of in-phase and quadrature
components, respectively. The mean value of Rα is given by
r̂α = E[Rα] = µxσ

2
x+λ2

x+µxσ
2
y+λ2

y where λ2
x =

∑µx
i=1 λ

2
xi

and λ2
y =

∑µy
i=1 λ

2
yi . Hence, the average signal-to-noise

(SNR), γ̄, is expressed as γ̄ = E[γ] = r̂αEs/N0, where γ is
the instantaneous SNR, Es is the energy per symbol, and N0

is the one-sided power spectral density of the additive white
Gaussian noise (AWGN).

According to [5], the α − η − κ − µ fading model can be
described by using the following non-zero positive parameters:

i) η =
µxσ

2
x

µyσ2
y

is the ratio of the total powers of the in-phase
and quadrature scattered waves of the multipath cluster.

ii) κ =
λ2
x+λ2

y

µxσ2
x+µyσ2

y
represents the ratio between the total

powers of the dominant components and scattered waves.
iii) µ =

µx+µy
2 denotes the real extension of the total number

of multipath clusters.
iv) p = µx

µy
stands for the ratio of the number of the multipath

clusters of in-phase and quadrature signals.
v) q =

λ2
xµyσ

2
y

λ2
yµxσ

2
x

is defined as the ratio of two ratios which
are the ratio of the power of the dominant components to
the power of the scattered waves of the in-phase signal
and its counterpart ratio for the quadrature signal.

The PDF of γ over α− η − κ− µ fading channels can be
written as [5, eq. (29)]

fγ(γ) =

∞∑
l=0

l∑
j=0

α(−1)j2j−µ−1l!cl
Γ(µ+ j)(l − j)!j!γ̄ϕ

γϕ−1e
− γ

α
2

2γ̄
α
2 (2)

where ϕ = α(µ+j)
2 , Γ(a) =

∫∞
0
xa−1e−xdx is the incomplete

Gamma function [10, eq. (8.310.1)] and cl can be recursively
calculated by [5, eq. (15)]

cl =
1

l

l−1∑
r=0

crdl−r l > 1 (3)

where dl−r can be computed by [5, eq. (31)]

dj =
µ

1 + p

(
2− ψ
2 + 3ψ

)j
− 8jκηp2q(2p− ψη)j−1γ̄α

(1 + ηq)(1 + κ)(2p+ 3ψη)j+1

+
µp

1 + p

(
2p− ψη
2p+ 3ψη

)j
− 8jκ(2p− ψ)j−1γ̄α

(1 + ηq)(1 + κ)(2p+ 3ψη)j+1

(4)

with ψ = (1+p)γ̄α

µ(1+η)(1+κ) and the initial value of cl, i.e. c0, can
be evaluated by [5, eq. (30)]

c0 =
8µ
(
2 + 3ψ)−

µ
1+p (2 + 3ψ ηp

)− µp
1+p

exp
(

3κ(2p(1+ηq)+3ψη(1+pq))
(1+ηq)(1+κ)(2+3ψ)(2+3ψη) γ̄

α
) (5)

Using the identity [11, eq. (1.39)], (2) can be rewritten as

fγ(γ) =

∞∑
l=0

l∑
j=0

α(−1)j2j−µ−1l!clγ
ϕ−1

Γ(µ+ j)(l − j)!j!γ̄ϕ
H1,0

0,1

[
γ
α
2

2γ̄
α
2

∣∣∣∣ −(0, 1)

]
(6)

where Hs,t
u,v[.] is the Fox’s H-function (FHF) defined in [11,

eq. (1.2)]

When γ̄ →∞, the exponential function in (2) tends to unity.
Thus, the asymptotic of the PDF of γ, fAsy

γ (γ) is deduced as

fAsy
γ (γ) ≈

∞∑
l=0

l∑
j=0

α(−1)j2j−µ−1l!cl
Γ(µ+ j)(l − j)!j!γ̄ϕ

γϕ−1 (7)

III. PERFORMANCE OF α− η − κ− µ FADING CHANNELS

A. Effective Rate

The ER has been proposed to measure the performance
of the wireless communication systems under the QoS con-
straints, such as system delays, that have not been taken into
consideration by Shannon [1].

The ER can be calculated by [12, eq. (4)]

R = − 1

A
log2

(∫ ∞
0

(1 + γ)−Afγ(γ)dγ

)
(8)

where A , θu/ln2 with θ denotes the delay exponent and
u = TB is the product of the time (T ) and bandwidth (B).

Substituting (6) into (8) and using the property [11, eq.
(1.126)] to express (1 + γ)−A in terms of the FHF, the
following integral is yielded∫ ∞

0

γϕ−1H1,1
1,1

[
γ

∣∣∣∣(1− A, 1)
(0, 1)

]
H1,0

0,1

[
γ
α
2

2γ̄
α
2

∣∣∣∣ −(0, 1)

]
dγ (9)

Making use of [11, pp. 60] for (9) and inserting the result in
(8) along with the remaining terms of (6), the ER is derived in
exact expression as shown in (10) at the top of the next page.

For the asymptotic behaviour of the ER, RAsy, we substitute
(7) into (8). Hence, the following integral is the result∫ ∞

0

(1 + γ)−Aγϕ−1dγ
(a1)
=

B(ϕ,A− ϕ)

Γ(A)
(11)

where (a1) follows [10, eq. (3.194.3)] and B(a, b) is the
incomplete Beta function [10, eq. (8.384.1)].

Inserting the result of (11) and the terms of (7) that have
not been used in the integral of (11), in (8), we have RAsy as

RAsy ≈ − 1

A
log2

( ∞∑
l=0

l∑
j=0

α(−1)j2j−µ−1l!clB(ϕ,A− ϕ)

Γ(A)Γ(µ+ j)(l − j)!j!γ̄ϕ

)
(12)

B. Energy Detection Based Spectrum Sensing

At the output of ED, the received signal, r(t), is given as
[13]

w(t) : H0

r(t) =

{
(13)

h(t)s(t) + w(t) : H1

where s(t) is the transmitted signal, h(t) is the channel
gain and w(t) represents the noise which is assumed to be
AWGN. Additionally, in (13), it can be noted there are two
binary hypothesis, namely, H0 and H1. The former means
that s(t) is absent whereas the latter signifies s(t) is present.
These hypothesis are deuced via comparing a predetermined
threshold value, λ, with the test statistic, ∆, which is computed
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R = − 1

A
log2

( ∞∑
l=0

l∑
j=0

α(−1)j2j−µ−1l!cl
Γ(A)Γ(µ+ j)(l − j)!j!γ̄ϕ

H2,1
1,2

[
2

2
α

∣∣∣∣ (1− ϕ, α2 )
(0, 1), (A− ϕ, α2 )

])
(10)

P̄d = 1− πλu
∞∑
l=0

l∑
j=0

α(−1)j2j−µ−u−1l!cl
Γ(µ+ j)(l − j)!j!γ̄ϕ

×H0,2:1,0;1,0;1,0
2,1:0,1;1,3;0,1

[
λ

2
,
λ

2
,

1

2γ̄
α
2

∣∣∣∣(1− u; 1, 1, 0); (1− ϕ; 0, 1, α2 )
(−u; 1, 1, 0)

∣∣∣∣ −(0, 1)

∣∣∣∣ (0.5, 1)
(0, 1), (1− u, 1), (0.5, 1)

∣∣∣∣ −(0, 1)

]
(19)

 

∆

| . |2 
Σ BPF 

r(t) Threshold 

Device 

H0

H1

λ
 

Fig. 1. System model of energy detection [9].

after filtering r(t) by a band-pass filter (BPF) with B and then
using square and sum devices over T as shown in Fig. 1.

Based on the comparison above, the performance of ED can
be analysed by the detection probability, Pd, which is present
when ∆ > λ and H1 are true. The second metric is the false
alarm probability, Pfa, which is obtained when both ∆ > λ
and H0 are true. It is worth mentioning that the detectability
of ED enhances when the Pd is high and Pfa is low. This
is because a large Pd means there is no harmful interference
between the licensed and unlicensed users whereas the small
value of Pfa leads to an efficient usage of the spectrum band.

When there is no fading effect, i.e., under AWGN channel,
the Pd and Pfa are expressed as [13, eq. (5) /eq. (4)]

Pd = Pr{∆ > λ | H1} = Qu(
√

2γ,
√
λ) (14)

and

Pfa = Pr{∆ > λ | H0} =
Γ(u, λ2 )

Γ(u)
(15)

where Pr{.} denotes the probability, Qx(a, b) is the general-
ized Marcum Q-function defined in [1, eq. (4.60)], and Γ(a, b)
is the upper incomplete Gamma function [9, eq. (8.350.2)].

1) Average Detection Probability: When the distribution of
h(t) in (13) is an α − η − κ − µ fading, the average of Pd
over (6) is computed to obtain the ADP, P̄d, as [14, eq. (19)]

P̄d =

∫ ∞
0

Pdfγ(γ)dγ (16)

With the help of [14, eq. (20.(c3))], the Pd, i.e.,
Qu(
√

2γ,
√
λ), of (14) can be represented as

Pd = 1− πe−γ
(
λ

2

)u
1

(2πi)2

∫
C1

∫
C2

Γ(u− t1 − t2)

Γ(1 + u− t1 − t2)

Γ(t1)Γ(t2)

Γ(0.5 + t2)Γ(0.5− t2)Γ(u− t2)

(
λ

2

)−t1(λγ
2

)−t2
dt1dt2

(17)

where i =
√
−1 and Ck with k ∈ {1, 2} is the suitable Barnes-

type closed contour in the complex tk-plane.

Plugging (6) and (17) in (16) and recalling the fact that∫∞
0
fγ(γ)dγ , 1, this yields∫ ∞
0

γϕ−t2−1e−γH1,0
0,1

[
γ
α
2

2γ̄
α
2

∣∣∣∣ −(0, 1)

]
dγ

(a2)
=

H1,1
1,1

[
1

2γ̄
α
2

∣∣∣∣(1− ϕ+ t2,
α
2 )

(0, 1)

]
(18)

where (a2) arises after recalling [11, eq. (2.19)].
Invoking [11, eq. (1.2)] for the FHF of (18) and then using

[11, eq. (A.1)], we obtain (19) as shown at the top of this
page. In (19), Hs,t:s1,t1;s2,t2;s3,t3

u,v:u1,v1;u2,v2;u3,v3
[.] represents the extended

generalised bivariate FHF (EGBFHF) defined in [11, eq.
(A.1)]. Since the EGBFHF is not yet performed in the popular
software packages such as MATLAB and MATHEMATICA,
the programming code of [15] is employed to calculate this
function.

2) Average AUC: The AUC is a single figure of merit that is
proposed as an alternative performance metric to the receiver
operating characteristic (ROC) curve which plots the P̄d versus
Pfa. This is because, in sometimes, when two systems are
compared using the ROC curve, the intersection between both
curves may happen in a certain value of the Pfa. Accordingly,
the result about the superiority of each one on the other is
ambiguous [9]. Therefore, the AUC can provide which scheme
has better detection capability than the other at different values
of γ̄ and u.

For AWGN, the AUC, A(γ), is given as [14, eq. (24)]

A(γ) = 1−
u−1∑
r=0

r∑
n=0

(
r + u− 1

r − n

)
2−(r+n+u)

n!
γne−

γ
2 (20)

The average AUC, Ā can be computed by [9, eq. (36)]

Ā =

∫ ∞
0

A(γ)fγ(γ)dγ (21)

Plugging (6) and (20) in (21) and making utilise of∫∞
0
fγ(γ)dγ , 1, we have this integral∫ ∞
0

γϕ+n−1e−
γ
2H1,0

0,1

[
γ
α
2

2γ̄
α
2

∣∣∣∣ −(0, 1)

]
dγ

(a3)
=

2ϕ+nH1,1
1,1

[
2
α
2−1

γ̄
α
2

∣∣∣∣(1− ϕ− n, α2 )
(0, 1)

]
(22)

where (a3) obtains after using [11, eq. (2.19)].
Plugging the result of (22) and the terms of (6) and (20)

that have not been inserted in (22), Ā over α − η − κ − µ
fading is deduced as given in (23) at the top of the next page.
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Ā = 1−
∞∑
l=0

l∑
j=0

α(−1)j l!cl2
j+ϕ−µ−u−1

Γ(µ+ j)(l − j)!j!γ̄ϕ
u−1∑
r=0

r∑
n=0

(
r + u− 1

r − n

)
1

2rn!
H1,1

1,1

[
2
α
2

2γ̄
α
2

∣∣∣∣(1− n− ϕ, α2 )
(0, 1)

]
(23)

For the asymptotic analysis of Ā, i.e., ĀAsy, we substitute
(7) and (20) into (21) and solve the integral with the help of
[10, eq. (3.381.4)]. Accordingly, we obtain

ĀAsy ≈ 1−
∞∑
l=0

l∑
j=0

α(−1)j l!cl
Γ(µ+ j)(l − j)!j!γ̄ϕ

u−1∑
r=0

r∑
n=0

(
r + u− 1

r − n

)
Γ(ϕ+ n)

2rn!
(24)

IV. TRUNCATING OF THE PDF OF α− η − κ− µ FADING

One can see that the PDF of α−κ−η−µ fading conditions
in (2) is included an infinite series. Therefore, a truncating
error should be applied to find the number of terms, N , that
is required to satisfy a specific figure of accuracy, ε(N). In
this work, we have employed [16, eq. (5)]

ε(N) =

∫ ∞
0

fγ(γ)dγ −
∫ ∞

0

f̂γ(γ)dγ (25)

where f̂γ(γ) is the truncating PDF in (6) for N terms that is
expressed as

f̂γ(γ) =

N∑
l=0

l∑
j=0

α(−1)j2j−µ−1l!clγ
ϕ−1

Γ(µ+ j)(l − j)!j!γ̄ϕ
H1,0

0,1

[
γ
α
2

2γ̄
α
2

∣∣∣∣ −(0, 1)

]
(26)

Substituting (6) and (26) into (25) and utilising the fact that∫∞
0
fγ(γ)dγ , 1, we have

ε(N) = 1− α

2µ+1Γ(µ)

N∑
l=0

l∑
j=0

(−2)j l!cl

(µ)j(l − j)!j!γ̄
α(µ+j)

2∫ ∞
0

γ
α(µ+j)

2 −1H1,0
0,1

[
γ
α
2

2γ̄
α
2

∣∣∣∣ −(0, 1)

]
dγ (27)

Recalling [11, eq. (2.8)] to calculate the integral in (27) and
performing some mathematical simplifications to yield

ε(N) = 1−
N∑
l=0

l∑
j=0

α(−1)j l!clγ̄
ϕΓ(ϕ)

21−j(α2 +1)Γ(µ+ j)(l − j)!j!
(28)

V. ANALYTICAL AND SIMULATION RESULTS

In this section, the numerical and the asymptotic results of
our derived expressions are compared with the Monte Carlo
simulations that are generated by 106 iterations. In all results,
p = q = 1, the minimum N that satisfies ε(N) ≤ 10−6 is
selected to be 40 and λ of the ADP is obtained form (15).

Fig. 2 shows the ER for A = 0.75 whereas Fig. 3
illustrates the average missed detection probability (AMDP),
P̄md = 1 − P̄d, for (Pfa, u) = (0.1, 2), and the average
complementary of AUC (CAUC) which is 1 − Ā for u = 2.
From Fig. 2, it is clear that the ER becomes better when
γ̄ increases at constant B. This refers to the increasing in
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Fig. 2. ER versus average SNR for different values of the fading parameters.
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Fig. 3. Average probability of missed detection and average CAUC versus
average SNR for different values of the fading parameters.

the total number of the signal levels which would allow to
transmit more bits per second. Moreover, in both figures, it
can be observed that the ER improves and both the P̄md and
the average CAUC decrease when α, η, κ, and/or µ increase.
This is because the high value of α means the system tends to
be linear whereas a large η indicates that the total power of the
in-phase components of the scattered waves is larger than that
of quadrature counterparts. Additionally, the increasing in κ
makes the total power of the scattered waves is higher than that
of the dominant components and high µ means a large number
of multipath clusters arrive at the receiver. For example, in
Fig. 2, at γ̄ = 20 dB and (η, κ, µ) = (0.1, 1, 1.5), the ER
for α = 1.5 is roughly 3.108 while it’s value for α = 2.5 is
nearly 3.315. In the same context, when η becomes 0.9, the
ER increases by approximately 2.62% at fixed α = 2.5. In
addition, the increase in κ from 1 to 6 enhances the ER by
nearly 10.6% for constant α, η, and µ at 2.5, 0.9, and 1.5,



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 00, NO. 00, JANUARY 2020 5

0

5

10

15

20

25

0

2

4

6

8

10

0

0.2

0.4

0.6

0.8

1

¯ (dB)
u

P̄
d

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

P
fa

= 0.1, 0.3, 0.5, 0.7

Fig. 4. ADP and ER versus average SNR and u for different Pfa.

0

5

10

15

20

25

0

2

4

6

8

10

0

1

2

3

4

5

6

¯ (dB)

u

R
(b
it
s/
se
c/
H
z)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

θ= 0.7, 0.5, 0.3, 0.1

Fig. 5. ER and average AUC versus average SNR and u for different θ.

respectively. Similarly, when (α, η, κ) = (2.5, 0.9, 1), the ER
for µ = 1.5 is 3.763 whereas it’s value for µ = 3.5 is 3.894.

In both Figs. 2 and 3, the exact results are perfectly matched
with their asymptotic and Monte-Carlo simulation counterparts
which proves the validation of our derived expressions.

To explain the relationship between the ER and ED, Fig. 4
demonstrates the ADP and ER versus u, and γ̄, for α = 1.5,
η = 0.1, κ = 1, µ = 1.5, θ = 0.1 and different values of
Pfa. Additionally, Fig. 5 portraits the ER and average AUC
versus u and γ̄. As expected, a substantial degradation in
the ER and the detection capability of ED is noticed when
u increases and/or γ̄ decreases. This is because the increasing
in u leads to reduce both the ADP and Pfa simultaneously.
However, the decreasing of the ADP is slower than the Pfa. In
the same context, the average AUC becomes low because its
computation depends on the area under the ROC curve. These
observations are consistent with the results of [17] and [18].
Hence, the ER, i.e., number of the transmitted bits, reduces due
to the increasing of the transmission delay and/or decreasing of
the bandwidth as it can be seen in Figs. 4 and 5. Furthermore,
the value of the ER rises with the decreasing of θ as a result

of a large delay of the received signal. These situations are
affirmed by the given results of [19]. Consequently, both the
QoS and the performance of the ED are related and affected
by u as well as the fading parameters of the channel.

VI. CONCLUSIONS

In this paper, the ER and the performance of ED based
spectrum sensing over α − η − κ − µ fading channels were
analysed first using exact and asymptotic expressions. There-
after, the mathematical relationship between the ER and ED
was explained. This relationship is very important in providing
good insights on how the ED of the signal and the QoS of the
communication systems are affected by the time-bandwidth
product. In addition, a series convergence acceleration for the
PDF of α−η−κ−µ fading was applied to find the number of
the truncated terms. The numerical and simulation results for
different scenarios were presented and showed that the system
performance improves when α, η, κ, and/or µ increase and u
decreases. The derived expressions can be used for various
fading models, such as α− κ− µ by plugging η → 1.
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